

Text Mining

Sholom M. Weiss
Nitin Indurkhya
Tong Zhang
Fred J. Damerau

Text Mining

Predictive Methods for
Analyzing Unstructured Information

~ Springer

Sholom M. Weiss
IBM Research
TJ Watson Labs
Yorktown Heights) NY 10598
USA
sholom@us.ibm.com

Tong Zhang
IBM Research
TJ Watson Labs
Yorktown Heights) NY 10598
USA
tongz@us.ibm.com

ISBN 0-387-95433-3

Nitin Indurkhya
School of Computer Science and Engineering
University of New South Wales
Sydney) NSW 2052
Australia
nitin@data-miner.com

Fred J. Damerau
IBM Research
TJ Watson Labs
Yorktown Heights) NY 10598
USA
damerau@sbcglobal.net

Printed on acid-free paper.

© 2005 Springer Science+Business Media) Inc.
All rights reserved. This work may not be translated or copied in whole or in part
without the written permission of the publisher (Springer Science+Business Media)
Inc., 233 Spring Street) New York) NY 10013) USA)) except for brief excerpts in con-
nection with reviews or scholarly analysis. Use in connection with any form of infor-
mation storage and retrieval) electronic adaptation) computer software) or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names) trademarks) service marks) and similar
terms) even if they are not identified as such) is not to be taken as an expression of
opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America. (MP)

9 8 7 6 5 4 3 2 1

springeronline.com

SPIN 10864579

Preface

Data mining is a mature technology. The prediction problem, looking
for predictive patterns in data, has been widely studied. Strong meth-
ods are available to the practitioner. These methods process structured
numerical information, where uniform measurements are taken over a
sample of data. Text is often described as unstructured information.
So, it would seem, text and numerical data are different, requiring
different methods. Or are they? In our view, a prediction problem can
be solved by the same methods, whether the data are structured nu-
merical measurements or unstructured text. Text and documents can
be transformed into measured values, such as the presence or absence
of words, and the same methods that have proven successful for predic-
tive data mining can be applied to text. Yet, there are key differences.
Evaluation techniques must be adapted to the chronological order of
publication and to alternative measures of error. Because the data are
documents, more specialized analytical methods may be preferred for
text. Moreover, the methods must be modified to accommodate very
high dimensions: tens of thousands of words and documents. Still, the
central themes are similar.
Our view of text mining allows us to unify the concepts of different

fields. No longer is “natural language processing” the sole domain of
linguists and their allied computer specialists. No longer is search en-
gine technology distinct from other forms of machine learning. Ours is
an open view. We welcome you to try your hand at learning from data,
whether numerical or text. You need not have a Ph.D. in linguistics to
work in this area.
Not everyone will agree with our perspective. The natural language

specialist may argue that ours is a shallow view of text that will solve
some problems, but the bigger problems, such as answering questions

vi Preface

posed by a user, can only be solved with a deeper understanding of
language.
There is room for both viewpoints to coexist. Large text collections

contain valuable information that can be mined with today’s tools in-
stead of waiting for tomorrow’s techniques. While others search for
the essence of language understanding, we can immediately look for
recurring word patterns in large collections of digital documents.
Some parts of the book may seem simple to the advanced student

or professional. Other parts may appear mathematical. They all fit
our common theme of a strictly empirical view of text mining and
an application of well-known analytical methods. We provide examples
and software. Our presentation has a pragmatic bent with numerous
references in the research literature for you to follow when so inclined.
We want to be practical, yet inclusive of the wide community that might
be interested in applications of text mining. We concentrate on predic-
tive learning methods but also look at information retrieval and search
engines, as well as clustering methods. We illustrate by examples, case
studies, and the accompanying downloadable software.
While some analytical methods may be highly developed, predictive

text mining is an emerging area of application. We have tried to sum-
marize our experiences and provide the tools and techniques for your
own experiments.

Audience

Our book is aimed at IT professionals and managers as well as
advanced undergraduate computer science students and beginning
graduate students. Some background in data mining is beneficial but
is not essential. If you are looking to do research in the area, the ma-
terial in this book will provide direction in expanding your horizons. If
you want to be a practitioner of text mining, you can read about our
recommended methods and our descriptions of case studies.

Supplementary Web Software

Data-Miner Pty. Ltd. has provided a free software license for those
who have purchased the book. The software, which implements many
of the methods discussed in the book, can be downloaded from the
data-miner.com Web site.

Preface vii

Acknowledgements

Some of the case studies in Chapter 7 are based on our prior publica-
tions. In those projects, we acknowledge the participation of Chidanand
Apté, Radu Florian, Abraham Ittycheriah, Vijay Iyengar, Hongyan
Jing, David Johnson, Frank Oles, Naval Verma, and Brian White.
Arindam Banerjee made many helpful comments on a draft of our
book. We thank our editors, Wayne Wheeler, Ann Kostant, and Wayne
Yuhasz, for their support. Our experiences in writing this book were
quite enjoyable. We worked mostly on our own time, some of us located
in different time zones, sometimes distant from home and communi-
cating over the Internet. The four of us, three computer scientists and
one linguist, are all colleagues and collaborators. Yet, we have worked
in different areas, with substantial overlap in our approaches to text
mining.

Sholom Weiss, Tong Zhang, and Fred Damerau - New York
Nitin Indurkhya - Australia and Brasil

Northern Summer and Southern Winter, 2004

Contents

Preface v

1 Overview of Text Mining 1
1.1 What’s Special about Text Mining? 1

1.1.1 Structured or Unstructured Data? 2
1.1.2 Is Text Different from Numbers? 3

1.2 What Types of Problems Can Be Solved? 6
1.3 Document Classification 7
1.4 Information Retrieval 8
1.5 Clustering and Organizing Documents 9
1.6 Information Extraction 10
1.7 Prediction and Evaluation 11
1.8 The Next Chapters 12
1.9 Historical and Bibliographical Remarks 13

2 From Textual Information to Numerical Vectors 15
2.1 Collecting Documents 15
2.2 Document Standardization 18
2.3 Tokenization 20
2.4 Lemmatization 21

2.4.1 Inflectional Stemming 21
2.4.2 Stemming to a Root 23

2.5 Vector Generation for Prediction 25
2.5.1 Multiword Features 32
2.5.2 Labels for the Right Answers 34
2.5.3 Feature Selection by Attribute Ranking 35

2.6 Sentence Boundary Determination 36

x Contents

2.7 Part-Of-Speech Tagging 37
2.8 Word Sense Disambiguation 39
2.9 Phrase Recognition 39
2.10 Named Entity Recognition 40
2.11 Parsing 40
2.12 Feature Generation 42
2.13 Historical and Bibliographical Remarks 44

3 Using Text for Prediction 47
3.1 Recognizing that Documents Fit a Pattern 49
3.2 How Many Documents Are Enough? 51
3.3 Document Classification 52
3.4 Learning to Predict from Text 54

3.4.1 Similarity and Nearest-Neighbor Methods 55
3.4.2 Document Similarity 56
3.4.3 Decision Rules 58

3.4.3.1 How to Find the Best Decision Rules 64
3.4.4 Scoring by Probabilities 66
3.4.5 Linear Scoring Methods 69

3.4.5.1 How to Find the Best Scoring Model 71
3.5 Evaluation of Performance 77

3.5.1 Estimating Current and Future Performance 77
3.5.2 Getting the Most from a Learning Method 80

3.6 Applications 81
3.7 Historical and Bibliographical Remarks 82

4 Information Retrieval and Text Mining 85
4.1 Is Information Retrieval a Form of Text Mining? 85
4.2 Key Word Search 87
4.3 Nearest-Neighbor Methods 88
4.4 Measuring Similarity 89

4.4.1 Shared Word Count 89
4.4.2 Word Count and Bonus 90
4.4.3 Cosine Similarity 91

4.5 Web-Based Document Search 92
4.5.1 Link Analysis 93

4.6 Document Matching 97
4.7 Inverted Lists 98
4.8 Evaluation of Performance 100
4.9 Historical and Bibliographical Remarks 101

Contents xi

5 Finding Structure in a Document Collection 103
5.1 Clustering Documents by Similarity 106
5.2 Similarity of Composite Documents 107

5.2.1 k-Means Clustering 109
5.2.1.1 Centroid Classifier 113

5.2.2 Hierarchical Clustering 114
5.2.3 The EM Algorithm 117

5.3 What Do a Cluster’s Labels Mean? 120
5.4 Applications 122
5.5 Evaluation of Performance 123
5.6 Historical and Bibliographical Remarks 126

6 Looking for Information in Documents 129
6.1 Goals of Information Extraction 129
6.2 Finding Patterns and Entities from Text 132

6.2.1 Entity Extraction as Sequential Tagging 132
6.2.2 Tag Prediction as Classification 133
6.2.3 The Maximum Entropy Method 135
6.2.4 Linguistic Features and Encoding 140
6.2.5 Sequential Probability Model 143

6.3 Coreference and Relationship Extraction 145
6.3.1 Coreference Resolution 145
6.3.2 Relationship Extraction 148

6.4 Template Filling and Database Construction 149
6.5 Applications 151

6.5.1 Information Retrieval 151
6.5.2 Commercial Extraction Systems 151
6.5.3 Criminal Justice 152
6.5.4 Intelligence 153

6.6 Historical and Bibliographical Remarks 154

7 Case Studies 157
7.1 Market Intelligence from the Web 157
7.2 Lightweight Document Matching for Digital Libraries 163
7.3 Generating Model Cases for Help Desk Applications 167
7.4 Assigning Topics to News Articles 172
7.5 E-mail Filtering 178
7.6 Search Engines 182
7.7 Extracting Named Entities from Documents 186
7.8 Customized Newspapers 191
7.9 Historical and Bibliographical Remarks 194

xii Contents

8 Emerging Directions 197
8.1 Summarization 198
8.2 Active Learning 201
8.3 Learning with Unlabeled Data 202
8.4 Different Ways of Collecting Samples 203

8.4.1 Multiple Samples and Voting Methods 204
8.4.2 Online Learning 205
8.4.3 Cost-Sensitive Learning 206
8.4.4 Unbalanced Samples and Rare Events 207

8.5 Question Answering 208
8.6 Historical and Bibliographical Remarks 210

Appendix: Software Notes 213
A.1 Summary of Software 213
A.2 Requirements 214
A.3 Download Instructions 215

References 217

Author Index 229

Subject Index 233

1

Overview of Text Mining

1.1 What’s Special about Text Mining?

Do you have a shortage of data? Not very likely. A consequence of
the pervasive use of computers is that most data originate in digital
form. If we trade a stock or write a book or buy a product online, these
events evolve electronically. Since so many paper transactions are now
in paperless digital form, lots of “big” data are available for further
analysis.
The concept of data mining, finding valuable patterns in data, is

an obvious response to the collection and storage of large volumes of
data. Data mining is no longer an emerging technology awaiting fur-
ther development. Although its application is far from universal, the
techniques of data mining are highly developed and for some forms of
analysis are entering a mature phase.
We would like to say “Give us data and we will find the patterns.”

Unfortunately, data-mining methods expect a highly structured for-
mat for data, necessitating extensive data preparation. Either we have
to transform the original data, or the data are supplied in a highly
structured format.
Data-mining methods learn from samples of past experience. If we

speak to specialists in predictive data mining, their data will be in nu-
merical form. These people are the “numbers guys.” The “text miners”
do not expect an orderly series of numbers. They are happy to look at
collections of documents, where the contents are readable and their
meaning is obvious.

2 1. Overview of Text Mining

This is our first distinction between data and text mining: num-
bers vs. text. That doesn’t mean that these are two distinct concepts.
Both are based on samples of past examples. The composition of the
examples is very different, yet many of the learning methods are sim-
ilar. That’s because the text will be processed and transformed into a
numerical representation.

1.1.1 Structured or Unstructured Data?
Superficially, we see numbers or text in our data. The text is usually
a collection of unstructured documents with no special requirements
for composing the documents. As noted above, most data-mining ap-
plications assimilate only structured information. The data must be
prepared in a very special way before any learning methods can be
applied. Figures 1.1 and 1.2 illustrate the world of structured data.
Typical data-mining applications use structured information that is

carefully prepared. The data may be transformed by a “data prepara-
tion” process or, better yet, the data may be collected based on careful
prior design for mining. The items that will be used are clearly de-
scribed over a range of all possibilities, and these are then recorded
uniformly for every example that is a member of the sample. The recipe
is well-known. Two types of information are expected: (a) ordered nu-
merical and (b) categorical. Ordered numerical attributes have values
where greater than or less than comparisons have meaning. For exam-
ple, weight and income are obviously ordered. Categorical attributes
are unordered numerical codes that have a definition in a codebook.
The most common categorical attribute is something that can be mea-
sured as true or false, represented by a one or a zero. For example,
gender can be measured as male or female, or business category can
be measured by a code. The meaning of the code is described else-
where, not to be used by the learning program but by the individuals
interpreting the results of learning.
If data can be described by a spreadsheet with its tabular format,

then the problem is highly structured. The task of data collection is
to fill in the blank cells. Many mathematical methods use spreadsheet
data, also known as a matrix. To learn from spreadsheet data, we pop-
ulate the cells formed by intersecting rows and columns. We must fill
in these cells in a uniform manner. Each cell is organized in the same
way. A completed row is a complete example of past experience. For
example, in a medical domain, it might be a single patient. A column
is an example of one measurement on the patient, for example blood

1.1 What’s Special about Text Mining? 3

Figure 1.1. Structured Data in Standard Format

Systolic Disease
Gender BP Weight Code

M 175 65 3
F 141 72 1
.
F 160 59 2

Figure 1.2. A Spreadsheet Example of Medical Data

pressure. Thus, the intersection of row 2 and column 3 in Figure 1.2 is
the weight of the second patient or, more generally, the second example
and third measurement.
We can now clearly see the structured world of data mining. Data

must be represented in a highly organized manner. We typically use
a spreadsheet format. The labels of columns are designed to fit the
domain and are made permanent. Following this design, data are col-
lected by adding rows (i.e., examples), where each example is measured
using the same attributes. It is mechanically easy to add a new ex-
ample by filling in a row. Adding a new attribute, a column, is more
difficult, requiring a review of all previous examples and a measure-
ment of the new value for each. Once we have data such as these, we
can operate in a typical mathematical fashion. A single row or column
is a vector, and the complete spreadsheet or database table is a matrix.

1.1.2 Is Text Different from Numbers?
The presentations of data for classical data mining and text mining
are quite different. Whereas data-mining methods like to see the data
in spreadsheet format, text-mining methods like to see a document
format, and the standard presentation for learning is a variant of the
format called XML used in the document world. Clearly, we expect that
text is quite different from numbers. Still, the methods that we will
discuss in this book are similar to those used for data mining. These
methods have proved remarkably successful without understanding
specific properties of text such as the concepts of grammar or the
meaning of words. Strictly low-level frequency information is used,
such as the number of times a word appears in a document, and

4 1. Overview of Text Mining

Company Income Job Overseas
0 1 0 1
1 0 1 1
1 1 1 0
0 0 0 1

Figure 1.3. A Binary Spreadsheet of Words in Documents

then well-known methods of machine learning are applied. One of the
main themes supporting text mining is the transformation of text into
numerical data, so although the initial presentation is different, at
some intermediate stage, the data move into a classical data-mining
encoding. The unstructured data become structured.
Our text-mining methods will be similar to classical data-mining

methods. These methods will transform data from text to standard
numerical forms. To make these methods work, we need to transform
text into a standard spreadsheet format and fill in the spreadsheet’s
cells. The rows of a spreadsheet are examples of prior experience, so
for text, we can consider a document to be one complete example. A
column is an attribute that can be measured. In the most fundamental
model of text, we can consider the presence or absence of a word to be
a measured attribute for each document. Thus, each row represents
a document and each column a word. We could fill in the cells, as in
Figure 1.3, with ones or zeros. In this example, the word “income”
appears in documents 1 and 3 but not documents 2 or 4.
Many variants of this document and word representation could

be explored, but this is the fundamental concept, where words are
attributes and documents are examples, and together these form a
sample of data that can feed our well-known learning methods. Many
machine-learning methods perform accurately with this transforma-
tion, working with far larger amounts of data than humans could
hope to process. These programs have little knowledge of meaning or
grammar. They are statistical methods that lack prior knowledge. They
counterbalance that deficiency with massive processing of data, finding
patterns in word combinations that are recurring and predictive.
The spreadsheet model of data returns us to the familiar territory

of classical data-mining methods. Nevertheless, we would be foolish to
rush to apply learning methods in their original form without taking
advantage of the special characteristic of text. The spreadsheet re-
mains the conceptual model, but it would be impractical, inefficient, or
even ineffective until we understood some of its important differences
from classical numerical data.

1.1 What’s Special about Text Mining? 5

Consider a collection of documents. The set of attributes will be the
total set of unique words in the collection. We call this set of words a
dictionary. The examples are the individual documents. We compose
a spreadsheet and fill in the cells with a one for the presence of a
word and a zero for its absence. An application might have many thou-
sands or even millions of documents. The dictionary will converge to
a smaller number of words than the number of documents but can
readily number several hundred thousands. Specialized documents,
such as repair manuals with part numbers that are alphanumeric, may
lead to very large dictionaries. It appears that the spreadsheet model
is too unwieldy to be practical.
Viewing the spreadsheet more closely, we see almost all zeros. Unless

individual documents are surprisingly lengthy, almost book length, the
matrix is sparse: any individual document will use only a tiny subset
of the potential set of words in a dictionary. Because of that special
characteristic, the spreadsheet remains a reasonable conceptual model
of data. Methods that process text will expect sparse spreadsheets
and will leverage that property in their implementations to store only
positive cell values.
Sparseness is not the only representational difference. All the values

in a text-mining spreadsheet are positive. Classical data-mining meth-
ods will consider all values of an attribute, both positive and negative.
The decision criteria could readily say “if word x has value zero, then
conclude class y.” In contrast, text-mining methods mostly concentrate
on positive matches, not worrying whether other words are absent from
a document. This view also leads to great simplifications in process-
ing, often allowing text-mining programs to operate in what would be
considered huge dimensions for regular data-mining applications.
If we focus on positive occurrences of words, we also have a solution

to one of the bête noires of applying data-mining methods: missing
values. The spreadsheet model for data has a cell for each measurable
value in an example. Most methods expect the cell to have a value.
In practical applications, such as when we extract information from a
real-world database, a great deal of information is missing, and the cell
remains empty. An empty cell is not the same as saying that the answer
is a default value, such as false for a binary-valued attribute or a mean
value for a real-valued attribute. Many schemes have been developed
for managing missing values, almost all with inherent deficiencies.
These weaknesses are particularly manifest when the majority of val-
ues are missing. For text, missing values are a nonissue: words are

6 1. Overview of Text Mining

either present or absent from a document. We can completely fill in the
spreadsheet and all the cells.
In our simplified world of text mining, we have described documents

as examples and words as attributes in a spreadsheet. Although it
could be argued that these are gross simplifications of the represen-
tation needed for text, it is consistent with our theme of transforming
words to numbers, so that known data-mining methods can be applied.
We will present numerous variations on this model of data and its
statistical view of words and text. Thus, although text-mining operates
in very high dimensions, in many situations, processing is effective and
efficient because of the sparseness characteristic of most documents
and most practical applications.
Let’s look at the types of problems that we can try to solve with this

approach to data representation and learning methods.

1.2 What Types of Problems Can Be Solved?

A primary focus of our attention is classification and prediction. These
are among the most widely studied and applied methods and applica-
tions of data mining. Given a sample of past experience and correct
answers for each example, the objective is to find the correct answers
for new examples. We will consider those types of problems, such as
text categorization, that are clear applications for predictive methods.
The concept of classification can be extended to data that do not have

clearly labeled answers. Our task would be to organize the data in such
a way that we can make up labels or answers and expect these to hold
in the future. This process is referred to as clustering.
Although similarity between documents is an essential ingredient

in organizing unlabeled documents into distinct groups, measuring
similarity of documents is an end in itself. Measuring similarity be-
tween documents is fundamental to most forms of document analysis,
especially information retrieval.
The applications that we discuss do not emphasize linguistic anal-

ysis. Statistical and associational relationships are the basis of our
presentation. At some point in the future, a deeper semantic under-
standing may demonstrate clear performance advantages. For now, the
preeminence of statistical approaches has been shaped by the increas-
ing capabilities of computer resources. Most important has been the
outpouring of digital data, where libraries of documents are in digital
form, ready for analysis by text-mining methods.

1.3 Document Classification 7

Let’s look at some of the areas where these text-mining methods can
work for us.

1.3 Document Classification

Text categorization is the widely used, but ponderous, name for doc-
ument classification. It is the purest embodiment of the spreadsheet
model with labeled answers. Once the data are transformed to the
usual numerical spreadsheet format, standard data-mining methods
are applicable. Figure 1.4 illustrates the document classification ap-
plication. Documents are organized into folders, one folder for each
topic. A new document is presented, and the objective is to place this
document in the appropriate folders. For example, we might have a
folder for household or financial documents and we want to add new
documents to the correct folder. The application is almost always bi-
nary classification because a document can usually appear in multiple
folders.
Originally, this type of problem was considered a form of indexing,

much like the index of a book. As more and more documents have
become available online, the applicability of this task has broadened.
Some of the more obvious tasks are related to e-mail: for example, au-
tomatically forwarding e-mail to the appropriate company department
or detecting spam mail. The spreadsheet model with one column cor-
responding to the correct answer is the universal classification model
for data, and the transformed text data can readily be combined with
standard numerical data-mining data. As an example, you might think

Figure 1.4. Text Categorization

8 1. Overview of Text Mining

that you could predict future stock movements based on prior experi-
ence. You collect news articles that appeared prior to a rise or fall in
stock prices along with company financial data. The labels would be
binary, 1 for up and 0 for down.

1.4 Information Retrieval

Information retrieval is the topic most commonly associated with on-
line documents. What is more fundamental to browsing the Internet
than a search engine? The general task of information retrieval is
illustrated in Figure 1.5. A collection of documents is obtained, we give
clues as to the documents that we want to retrieve from the collection,
and then documents matching the clues are presented as answers to
our query.
What are the clues, and how are they used to retrieve relevant doc-

uments? The clues are words that help identify the relevant stored
documents. In a typical instance of invoking a search engine, a few
words are presented, and these words are matched to the stored docu-
ments. The best matches are presented as the responses. The process
can be generalized to a document matcher, where instead of a few
words, a complete document is presented as a set of clues. The in-
put document is then matched to all stored documents, retrieving the
best-matched documents.
A basic concept for information retrieval is measuring similarity:

a comparison is made between two documents, measuring how sim-
ilar the documents are. For comparison, even a small set of words
input into a search engine can be considered as a document that can

Figure 1.5. Retrieving Matched Documents

1.5 Clustering and Organizing Documents 9

be matched to others. From one perspective, measuring similarity
is related to predictive methods for learning and classification that
are called nearest-neighbor methods. The common theme is measur-
ing similarity, and variations of these methods are fundamental to
information retrieval.
The spreadsheet model of data can readily be used for these tasks.

The new document is equivalent to a new row. The new row is compared
to all the other rows, and the most similar rows and their associated
documents are the answers.

1.5 Clustering and Organizing Documents

For text categorization, we saw that the objective was to place new
documents into the appropriate folders. These folders were created
by someone with knowledge of the document structure, someone who
knew the expected topics. What if we have a collection of documents
with no known structure? For example, a company may have a help
desk that receives and records calls by users of their products. The com-
pany might want to learn about the categories and types of complaints.
The general objective is illustrated in Figure 1.6. Given a collection of
documents, find a set of folders such that each holds similar documents.

Figure 1.6. Organizing Documents into Groups

10 1. Overview of Text Mining

The clustering process is equivalent to assigning the labels needed
for text categorization. Because there are many ways to cluster docu-
ments, it is not quite as powerful a process as assigning answers (i.e.,
known correct labels) to documents. Still, clustering can be insightful.
By studying key words that characterize a cluster, a company could
learn about its customers. In the help-desk example, a computer com-
pany might find that the largest cluster of complaints is for networking
problems. It might also identify an unexpected type of problem, docu-
ments indicating many calls for help, for which they do not have a good
solution.
In terms of the spreadsheet model, clustering will add at least one

column to a spreadsheet, corresponding to true-or-false labels for the
examples. The number of labels will be determined by the clustering
algorithm.

1.6 Information Extraction

Our representation of data looks at information in terms of words.
This is a rudimentary formulation that is surprisingly successful
for many applications. In comparison with classical numerical data-
mining representations, these measurements are very shallow. We are
only measuring the presence or absence of words. A data-mining rep-
resentation may look the same, but the measurements themselves will
be far broader and more complex. They may be real-valued variables,
such as sales volume, or a code, such as an industry code like “auto
industry.” Someone is responsible for defining these attributes and
depositing them in a database.
An alternative way of looking at these distinctions is that data min-

ing expects highly structured data, and text is naturally unstructured.
To make text structured, we have employed a very shallow repre-
sentation that measures the simple occurrence of words. Information
extraction is a subfield of text mining that attempts to move text min-
ing onto an equal footing with the structured world of data mining.
Figure 1.7 illustrates the task of information extraction. The objec-
tive is to take an unstructured document and automatically fill in the
values of a spreadsheet.
A database, at least one organized by fields or tables, is structured.

When the information is unstructured, such as that found in a collec-
tion of documents, then a separate process is needed to extract data
from an unstructured format. For example, we may examine docu-

1.7 Prediction and Evaluation 11

Revenue Profit

25000000 4500000

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...on revenues of twenty five
million dollars, the company
reported a profit of 4.5 million
for the fiscal year...

Input Document

Spreadsheet

Figure 1.7. Extracting Information from a Document

ments about companies and extract the sales volumes and industry
codes from text that has not been structured for storage in a database.
The attribute that is measured will not have a fixed position in the text
and may not be described in the same way in different documents.
In terms of our spreadsheet model of data, the objective is to fill in

the cells. The role of the examples is unchanged; they are documents.
The columns are not just words but can be higher-level concepts that
are found by the information extraction process. This process examines
documents and fills in the cells, a process that is equivalent to populat-
ing a database table. Once the process is completed, the usual learning
methods can be applied to the spreadsheet.

1.7 Prediction and Evaluation

Our ultimate goal is prediction, projecting from a sample of prior exam-
ples to new unseen examples. The learning program studies documents
and finds some generalized rules that will give correct answers on
new examples. How do we know that we will be successful on new
examples? The classic approach is to “hold out” some examples with
known answers, not allowing the learning program to train on those
examples. These new examples are used solely for evaluation. For many
text-mining scenarios, the holdout evaluation will be effective (e.g.,
assigning topics to news stories, such as financial or sports stories).
Even so, there are special twists. News stories change over time, and

12 1. Overview of Text Mining

we must be sensitive to dates of publication in our selection of test
documents.
One of the basic concepts of prediction is the measurement of error.

For topic assignment, we can readily determine whether a program’s
answer is right or wrong. The classical measures of accuracy will be
applicable, but not all errors will be evaluated equally. That’s why
measures of accuracy such as “recall” and “precision” are especially
important to document analysis.
Not all text-mining problems present themselves in completed

spreadsheet form. Therefore we need to examine techniques for clus-
tering or information extraction, where labeled answers are not readily
accessible. Although prediction is primary, these related subtasks are
evaluated in less certain terms. The concepts of error and evaluation
must be tailored to the task at hand and its immediate goals.

1.8 The Next Chapters

Wewill discuss each of the aforementioned topics in-depth. The empha-
sis is almost exclusively on a statistical approach. Although we have
said that text can be mapped into a standard framework for numerical
data mining, the differences in data preparation strongly influence the
designs and selection of learning methods.
Having an efficient representation suitable for operation in a high-

dimensional space of documents does not give a complete picture of
text-mining methods. It is not just a matter of transforming words to
vectors and applying standard learning methods. Experience with text
and statistical methods gives us direction in favoring some approaches
over others.
We will discuss our selection of methods for processing text. Doc-

ument and text processing has a very large body of knowledge. Our
objectives are much more limited. The presentation of text mining
emphasizes predictive methods. Ours is not an encyclopedic body of
knowledge. Rather, we unify several areas that have been treated sep-
arately. Our goal is a practical and introductory guide, that integrates
related topics and provides practical advice for text mining.
Historically, these methods have their antecedents in several

research communities, many originally associated with artificial in-
telligence, including the specialized fields of informational retrieval,
knowledge discovery and data mining, and natural language.

1.9 Historical and Bibliographical Remarks 13

1.9 Historical and Bibliographical Remarks

The roots of what we now call text mining are deep in the area of in-
formation retrieval. Document classification is similar in many ways to
document indexing which was extensively studied in the late 1950s and
1960s [Luhn, 1959]; [Maron and Kuhns, 1960]. Document clustering
and measurement of document similarity are also old topics [Jardine
and van Rijsbergen, 1971]. Representation of a document as a bag
of words, each with an attached frequency measure, became popular
by the 1970s [Salton et al., 1975]. As artificial intelligence methods
became more popular in the 1980s, they also were applied to prob-
lems we now classify as text mining. This is particularly true of text
categorization [Hayes and Weinstein, 1990].
The real impetus for the kinds of applications we see today comes

from two sources: the availability of cheap, fast computing and of enor-
mous amounts of text in digital form. In the past, when text collections
were formed by punching them into cards or paper tape before being
read into an expensive computer with limited memory, only a few
centers could do the kinds of experiments now conducted on desktop
computer systems.
Much of the advancement of technology in text mining has come

in connection with government-sponsored challenge competitions, each
capped by a conference in which the participants present their results.
Examples include the MUC (Message Understanding Conference),
which concluded with MUC-7, TREC (Text Retrieval Conference),
CoNLL (Conference on Natural Language Learning), and ACE (Au-
tomatic Content Extraction) conferences. More general conferences
of interest include the ACL (Association for Computational Linguis-
tics) meetings, KDD (Knowledge Discovery and Data Mining), IJCAI
(International Joint Conference on Artificial Intelligence), and the
International Machine Learning Conference.
Although there is some overlap of interests, particularly in informa-

tion extraction, for the most part our concerns and interests are quite
different from those of the natural language processing community. For
example, we exclude topics such as parsing (although we will discuss
the utility of parsed output), dialogue understanding, deep semantic
representations, and the like. In recent years, computational linguists
have turned to statistics in the study of some of these problems and
sometimes use the same or similar statistical methods. In particular,
the speech understanding and parsing communities make extensive
use of hidden Markov models.

2

From Textual Information to
Numerical Vectors

To mine text, we first need to process it into a form that data-mining
procedures can use. As mentioned in the previous chapter, this typi-
cally involves generating features in a spreadsheet format. Classical
data mining looks at highly structured data. Our spreadsheet model
is the embodiment of a representation that is supportive of predictive
modeling. In some ways, predictive text mining is simpler and more
restrictive than open-ended data mining. Because predictive mining
methods are so highly developed, most time spent on data-mining
projects is for data preparation. We say that text mining is unstruc-
tured because it is very far from the spreadsheet model that we need
to process data for prediction. Yet, the transformation of data from text
to the spreadsheet model can be highly methodical, and we have a care-
fully organized procedure to fill in the cells of the spreadsheet. First,
of course, we have to determine the nature of the columns (i.e., the
features) of the spreadsheet. Some useful features are easy to obtain
(e.g., a word as it occurs in text) and some are much more difficult
(e.g., the grammatical function of a word in a sentence such as subject,
object, etc.). In this chapter, we will discuss how to obtain the kinds of
features commonly generated from text.

2.1 Collecting Documents

Clearly, the first step in text mining is to collect the data (i.e., the
relevant documents). In many text-mining scenarios, the relevant doc-

16 2. From Textual Information to Numerical Vectors

uments may already be given or they may be part of the problem
description. For example, a Web page retrieval application for an in-
tranet implicitly specifies the relevant documents to be the Web pages
on the intranet. If the documents are readily identified, then they can
be obtained, and the main issue is to cleanse the samples and ensure
that they are of high quality. As with nontextual data, human interven-
tion can compromise the integrity of the document collection process,
and hence extreme care must be exercised. Sometimes, the documents
may be obtained from document warehouses or databases. In these
scenarios, it is reasonable to expect that data cleansing was done before
deposit and we can be confident in the quality of the documents.
In some applications, one may need to have a data collection pro-

cess. For instance, for a Web application comprising a number of
autonomous Web sites, one may deploy a software tool such as a Web
crawler that collects the documents. In other applications, one may
have a logging process attached to an input data stream for a length
of time. For example, an e-mail audit application may log all incoming
and outgoing messages at a mail server for a period of time.
Sometimes the set of documents can be extremely large and data-

sampling techniques can be used to select a manageable set of relevant
documents. These sampling techniques will depend on the application.
For instance, documents may have a time stamp, and more recent doc-
uments may have a higher relevance. Depending on our resources, we
may limit our sample to documents that are more useful.
For research and development of text-mining techniques, more

generic data may be necessary. This is usually called a corpus. For
the accompanying software, we mainly used the collection of Reuters
news stories, referred to as Reuters corpus RCV1, obtainable from the
Reuters Corporation Web site. However, there are many other corpora
available that may be more appropriate for some studies.
In the early days of text processing (1950s and 1960s), one million

words was considered a very large collection. This was the size of one
of the first widely available collections, the Brown corpus, consisting
of 500 samples of about 2000 words each of American English texts of
varying genres. A European corpus, the Lancaster-Oslo-Bergen corpus
(LOB), was modeled on the Brown corpus but was for British English.
Both these are still available and still used. In the 1970s and 1980s,
many more resources became available, some from academic initiatives
and others as a result of government-sponsored research. Some widely
used corpora are the Penn Tree Bank, a collection of manually parsed

2.1 Collecting Documents 17

sentences from the Wall Street Journal; the TREC (Text Retrieval
and Evaluation Conferences) collections, consisting of selections from
the Wall Street Journal, the New York Times, Ziff-Davis Publications,
the Federal Register, and others; the proceedings of the Canadian
Parliament in parallel English–French translations, widely used in
statistical machine translation research; and the Gutenberg Project,
a very large collection of literary and other texts put into machine-
readable form as the material comes out of copyright. A collection of
Reuters news stories called Reuters-21578 Distribution 1.0 has been
widely used in studying methods for text categorization.
As the importance of large text corpora became evident, a number

of organizations and initiatives arose to coordinate activity and pro-
vide a distribution mechanism for corpora. Two of the main ones are
the Linguistic Data Consortium (LDC) housed at the University of
Pennsylvania and the International Computer Archive of Modern and
Medieval English (ICAME), which resides in Bergen, Norway. Many
other centers of varying size exist in academic institutions. The Text
Encoding Initiative (TEI) is a standard for text collections sponsored by
a number of professional societies concerned with language processing.
There a number of Web sites devoted to corpus linguistics, most having
links to collections, courses, software, etc.
Another resource to consider is the World Wide Web itself. Web

crawlers can build collections of pages from a particular site, such as
Yahoo, or on a particular topic. Given the size of the Web, collections
built this way can be huge. The main problem with this approach to
document collection is that the data may be of dubious quality and
require extensive cleansing before use. A more focused corpus can be
built from the archives of USENET news groups and accessible from
many ISPs directly or through Google Groups. These discussion groups
cover a single topic, such as fly fishing, or broader topics such as the
cultures of particular countries. A similar set of discussions is available
from LISTSERVs. These are almost always available only by subscrib-
ing to a particular group but have the advantage that many lists have
long-term archives.
Finally, institutions such as government agencies and corporations

often have large document collections. Corporate collections are usu-
ally not available outside the corporation, but government collections
often are. One widely studied collection is the MEDLINE data set from
the National Institutes of Health, which contains a very large number
of abstracts on medical subjects. The advantage of getting documents

18 2. From Textual Information to Numerical Vectors

from such sources is that one can be reasonably sure that the data have
been reviewed and are of good quality.

2.2 Document Standardization

Once the documents are collected, it is not uncommon to find them in
a variety of different formats, depending on how the documents were
generated. For example, some documents may have been generated by
a word processor with its own proprietary format; others may have
been generated using a simple text editor and saved as ASCII text; and
some may have been scanned and stored as images. Clearly, if we are
to process all the documents, it’s helpful to convert them to a standard
format.
The computer industry as a whole, including most of the

text-processing community, has adopted XML (Extensible Markup
Language) as its standard exchange format, and this is the standard we
adopt for our document collections as well. Briefly, XML is a standard
way to insert tags onto a text to identify its parts. Although tags can be
nested within other tags to arbitrary depth, we will use that capability
only sparingly here. We assume that each document is marked off from
the other documents in the corpus by having a distinguishing tag at
the beginning, such as <DOC>. By XML convention, tags come in be-
ginning and ending pairs. They are enclosed in angle brackets, and the
ending tag has a back slash immediately following the opening angle
bracket. Within a document, there can be many other tags to mark
off sections of the document. Common sections are <DATE>, <SUB-
JECT>, <TOPIC>, and <TEXT>. We will focus mainly on <SUBJECT>,
<TOPIC>, and <TEXT>. The names are arbitrary. They could just as
well be <HEADLINE> and <BODY>. An example of an XML document
is shown in Figure 2.1, where the document has a distinguishing tag of
<DOC>.
Many currently available corpora are already in this format (e.g., the

new corpus available from Reuters). The main reason for identifying
the pieces of a document consistently is to allow selection of those parts
that will be used to generate features. We will almost always want
to use the part delimited as <TEXT> but may also want to include
parts marked <SUBJECT>, <HEADLINE>, or the like. Additionally,
for text classification or clustering, one wants to generate features
from a TOPIC section if there is one. Selected document parts may be
concatenated into a single string of characters or may be kept separate

2.2 Document Standardization 19

<DOC>

<TEXT>

<TITLE>

Solving Regression Problems with Rule-based Classifiers

</TITLE>

<AUTHORS>

<AUTHOR>

Nitin Indurkhya

</AUTHOR>

<AUTHOR>

Sholom M. Weiss

</AUTHOR>

</AUTHORS>

<ABSTRACT>

We describe a lightweight learning method that induces an ensemble

of decision-rule solutions for regression problems. Instead of

direct prediction of a continuous output variable, the method

discretizes the variable by k-means clustering and solves the

resultant classification problem. Predictions on new examples are

made by averaging the mean values of classes with votes that are

close in number to the most likely class. We provide experimental

evidence that this indirect approach can often yield strong

results for many applications, generally outperforming direct

approaches such as regression trees and rivaling bagged regression

trees.

</ABSTRACT>

</TEXT>

</DOC>

Figure 2.1. An XML Document

if one wants to distinguish the features generated from the headline,
say, from those generated from the document body, and perhaps weight
them differently.
Many word processors these days allow documents to be saved in

XML format, and stand-alone filters can be obtained to convert existing
documents without having to process each one manually. Documents
encoded as images are harder to deal with currently. There are some
OCR (optical character recognition) systems that can be useful, but
these can introduce errors in the text and must be used with care.
Why should we care about document standardization? The main

advantage of standardizing the data is that the mining tools can be
applied without having to consider the pedigree of the document. For
harvesting information from a document, it is irrelevant what editor
was used to create it or what the original format was. The software

20 2. From Textual Information to Numerical Vectors

tools need to read data just in one format, and not in the many different
formats they came in originally.

2.3 Tokenization

Assume the document collection is in XML format and we are ready
to examine the unstructured text to identify useful features. The first
step in handling text is to break the stream of characters into words
or, more precisely, tokens. This is fundamental to further analysis.
Without identifying the tokens, it is difficult to imagine extracting
higher-level information from the document. Each token is an instance
of a type, so the number of tokens is much higher than the number of
types. As an example, in the previous sentence there are two tokens
spelled “the.” These are both instances of a type “the,” which occurs
twice in the sentence. Properly speaking, one should always refer to
the frequency of occurrence of a type, but loose usage also talks about
the frequency of a token. Breaking a stream of characters into tokens
is trivial for a person familiar with the language structure. A computer
program, though, being linguistically challenged, would find the task
more complicated. The reason is that certain characters are sometimes
token delimiters and sometimes not, depending on the application. The
characters space, tab, and newline we assume are always delimiters
and are not counted as tokens. They are often collectively called white
space. The characters () < > ! ? " are always delimiters and may also be
tokens. The characters . , : - ’ may or may not be delimiters, depending
on their environment.
A period, comma, or colon between numbers would not normally be

considered a delimiter but rather part of the number. Any other comma
or colon is a delimiter and may be a token. A period can be part of an
abbreviation (e.g., if it has a capital letter on both sides). It can also be
part of an abbreviation when followed by a space (e.g., Dr.). However,
some of these are really ends of sentences. The problem of detecting
when a period is an end of sentence and when it is not will be discussed
later. For the purposes of tokenization, it is probably best to treat any
ambiguous period as a word delimiter and also as a token.
The apostrophe also has a number of uses. When preceded and

followed by nondelimiters, it should be treated as part of the cur-
rent token (e.g., isn’t or D’angelo). When followed by an unambiguous
terminator, it might be a closing internal quote or might indicate a
possessive (e.g., Tess’). An apostrophe preceded by a terminator is

2.4 Lemmatization 21

unambiguously the beginning of an internal quote, so it is possible
to distinguish the two cases by keeping track of opening and closing
internal quotes.
A dash is a terminator and a token if preceded or followed by another

dash. A dash between two numbers might be a subtraction symbol or a
separator (e.g., 555-1212 as a telephone number). It is probably best to
treat a dash not adjacent to another dash as a terminator and a token,
but in some applications it might be better to treat the dash, except in
the double dash case, as simply a character.
An example of pseudocode for tokenization is shown in Figure 2.2. A

version of this is available in the accompanying software.
To get the best possible features, one should always customize the

tokenizer for the available text—otherwise extra work may be re-
quired after the tokens are obtained. The reader should note that
the tokenization process is language-dependent. We, of course, focus
on documents in English. For other languages, although the general
principles will be the same, the details will differ.

2.4 Lemmatization

Once a character stream has been segmented into a sequence of tokens,
the next possible step is to convert each of the tokens to a standard
form, a process usually referred to as stemming or lemmatization.
Whether or not this step is necessary is application-dependent. For
the purpose of document classification, stemming can provide a small
positive benefit in some cases. Notice that one effect of stemming is to
reduce the number of distinct types in a text corpus and to increase
the frequency of occurrence of some individual types. For example, in
the previous sentence, the two instances of “types” would be reduced
to the stem “type” and would be counted as instances of that type,
along with instances of the tokens “type” and “typed.” For classification
algorithms that take frequency into account, this can sometimes make
a difference. In other scenarios, the extra processing may not provide
any significant gains.

2.4.1 Inflectional Stemming
In English, as in many other languages, words occur in text in more
than one form. Any native English speaker will agree that the nouns
“book” and “books” are two forms of the same word. Often, but not

22 2. From Textual Information to Numerical Vectors

Initialize:
Set Stream to the input text string
Set currentPosition to 0 and internalQuoteFlag to false
Set delimiterSet to ’,.;:!?()<>+"\n\t space
Set whiteSpace to \t\n space

Procedure getNextToken:
L1: cursor := currentPosition; ch := charAt(cursor);

If ch = endOfStream then return null; endif
L2: while ch is not endOfStream nor instanceOf(delimiterSet) do

increment cursor by 1; ch := charAt(cursor);
endwhile
If ch = endOfStream then

If cursor = currentPosition then return null; endif
endif
If ch is whiteSpace then

If currentPosition = cursor then
increment currentPosition by 1 and goto L1;

else
Token := substring(Stream,currentPosition,cursor-1);
currentPosition := cursor+1; return Token;

endif
endif
If ch = ’ then

If charAt(cursor-1) = instanceOf(delimiterSet) then
internalQuoteFlag := true; increment currentPosition by 1; goto L1;

endif
If charAt(cursor+1) != instanceof(delimiterSet) then
increment cursor by 1; ch := charAt(cursor); goto L2;

elseif internalQuoteFlag = true then
Token := substring(Stream,currentPosition,cursor-1);
internalQuoteFlag := false;

else
Token := substring(Stream,currentPosition,cursor);

endif
currentPosition := cursor+1; return Token;

endif
If cursor = currentPosition then
Token := ch; currentPosition := cursor+1;

else
Token := substring(Stream,currentPosition,cursor-1);
currentPosition := cursor;

endif
return Token;

endprocedure

Figure 2.2. Tokenization Algorithm

2.4 Lemmatization 23

always, it is advantageous to eliminate this kind of variation before
further processing (i.e., to normalize both words to the single form
“book”). When the normalization is confined to regularizing grammat-
ical variants such as singular/plural and present/past, the process is
called “inflectional stemming.” In linguistic terminology, this is called
“morphological analysis.” In some languages, for example Spanish,
morphological analysis is comparatively simple. For a language such as
English, with many irregular word forms and nonintuitive spelling, it
is more difficult. There is no simple rule, for example, to bring together
“seek” and “sought.” Similarly, the stem for “rebelled” is “rebel,” but the
stem for “belled” is “bell.” In other languages, inflections can take the
form of infixing, as, in the German “angeben” (declare), for which the
past participle is “angegeben.”
Returning to English, an algorithm for inflectional stemming must

be part rule-based and part dictionary-based. Any stemming algorithm
for English that operates only on tokens, without more grammatical
information such as part-of-speech, will make some mistakes because
of ambiguity. For example, is “bored” the adjective as in “he is bored”
or is it the past tense of the verb “bore”? Furthermore, is the verb
“bore” an instance of the verb “bore a hole,” or is it the past tense of the
verb “bear”? In the absence of some often complicated disambiguation
process, a stemming algorithm should probably pick the most frequent
choice. Pseudocode for a somewhat simplified inflectional stemmer for
English is given in Figure 2.3. Notice how the algorithm consists of
rules that are applied in sequence until one of them is satisfied. Also
notice the frequent referrals to a dictionary, usually referred to as
a stemming dictionary. Although the inflectional stemmer is not ex-
pected to be perfect, it will correctly identify quite a significant number
of stems. An inflectional stemmer is available with the accompanying
software.

2.4.2 Stemming to a Root
Some practitioners have felt that normalization more aggressive than
inflectional stemming is advantageous for at least some text-processing
applications. The intent of these stemmers is to reach a root form with
no inflectional or derivational prefixes and suffixes. For example, “de-
normalization” is reduced to the stem “norm.” The end result of such
aggressive stemming is to reduce the number of types in a text col-
lection very drastically, thereby making distributional statistics more
reliable. Additionally, words with the same core meaning are coalesced,

24 2. From Textual Information to Numerical Vectors

Input: a text token and a dictionary
Doubling consonants: b d g k m n p r l t

Rules:
If token length < 4 return token
If token is number return token
If token is acronym return token
If token in dictionary return the stored stem
If token ends in s’

strip the ’ and return stripped token
If token ends in ’s

strip the ’s and return stripped token
If token ends in “is”, “us”, or “ss” return token
If token ends in s

strip s, check in dictionary, and return stripped token if there
If token ends with es

strip es, check in dictionary, and return stripped token if there
If token ends in ies

replace ies by y and return changed token
If token ends in s

strip s and return stripped token
If token doesn’t end with ed or ing return token
If token ends with ed

strip ed, check in dictionary and return stripped token if there
If token ends in ied

replace ied by y and return changed token
If token ends in eed

remove d and return stripped token if in dictionary
If token ends with ing

strip ing (if length > 5) and return stripped token if in dictionary
If token ends with ing and length ≤ 5 return token
// Now we have SS, the stripped stem, without ed or ing and it’s
// not in the dictionary (otherwise algorithm would terminate)
If SS ends in doubling consonant

strip final consonant and return the changed SS if in dictionary
If doubling consonant was l return original SS
If no doubled consonants in SS

add e and return changed SS if in dictionary
If SS ends in c or z, or there is a g or l before the final doubling consonant

add e and return changed SS
If SS ends in any consonant that is preceded by a single vowel

add e and return changed SS
return SS

Figure 2.3. Inflectional Stemming Algorithm

2.5 Vector Generation for Prediction 25

so that a concept such as “apply” has only one stem, although the text
may have “reapplied”, “applications”, etc. We cannot make any broad
recommendations as to when or when not to use such stemmers. The
usefulness of stemming is very much application-dependent. When in
doubt, it doesn’t hurt to try both with and without stemming if one has
the resources to do so.

2.5 Vector Generation for Prediction

Consider the problem of categorizing documents. The characteristic
features of documents are the tokens or words they contain. So without
any deep analysis of the linguistic content of the documents, we can
choose to describe each document by features that represent the most
frequent tokens. Figure 2.4 describes this process. A version of this
process is available in the accompanying software.
The collective set of features is typically called a dictionary. The

tokens or words in the dictionary form the basis for creating a spread-
sheet of numeric data corresponding to the document collection. Each
row is a document, and each column represents a feature. Thus, a cell
in the spreadsheet is a measurement of a feature (corresponding to
the column) for a document (corresponding to a row). We will soon
introduce the predictive methods that learn from such data. But let us
first explore the various nuances of this data model and how it might
influence the learning methods. In the most basic model of such data,
we simply check for the presence or absence of words, and the cell
entries are binary entries corresponding to a document and a word.
The dictionary of words covers all the possibilities and corresponds
to the number of columns in the spreadsheet. The cells will all have
ones or zeros, depending on whether the words were encountered in
the document.
If a learning method can deal with the high dimensions of such

a global dictionary, this simple model of data can be very effective.
Checking for words is simple because we do not actually check each
word in the dictionary. We build a hash table of the dictionary words
and see whether the document’s words are in the hash table. Large
samples of digital documents are readily available. This gives us confi-
dence that many variations and combinations of words will show up in
the sample. This expectation argues for spending less computational
time preparing the data to look for similar words or remove weak

26 2. From Textual Information to Numerical Vectors

Input:
ts, all the tokens in the document collection
k, the number of features desired

Output:
fs, a set of k features

Initialize:
hs := empty hashtable

for each tok in ts do
If hs contains tok then
i := value of tok in hs
increment i by 1

else
i := 1

endif
store i as value of tok in hs

endfor
sk := keys in hs sorted by decreasing value
fs := top k keys in sk
output fs

Figure 2.4. Generating Features from Tokens

words. Let the speedy computer find its own way during the learning
process.
But, in many circumstances, we may want to work with a smaller dic-

tionary. The sample may be relatively small, or a large dictionary may
be unwieldy. In such cases, we might try to reduce the size of the dic-
tionary by various transformations of a dictionary and its constituent
words. Depending on the learning method, many of these transforma-
tions can improve predictive performance. Table 2.1 lists some of the
transformations that can be performed.
If prediction is our goal, we need one more column for the correct

answer (or class) for each document. In preparing data for a learning
method, this information will be available from the document labels.
Our labels are generally binary, and the smaller class is almost always
the one of interest. Instead of generating a global dictionary for both
classes, we may consider only words found in the class that we are
trying to predict. If this class is far smaller than the negative class,
which is typical, such a local dictionary will be far smaller than the
global dictionary.
Another obvious reduction in dictionary size is to compile a list of

stopwords and remove them from the dictionary. These are words that

2.5 Vector Generation for Prediction 27

Table 2.1. Dictionary Reduction Techniques

Local Dictionary
Stopwords
Frequent Words
Feature Selection
Token Reduction: Stemming, Synonyms

almost never have any predictive capability, such as articles a and
the and pronouns such as it and they. These common words can be
discarded before the feature generation process, but it’s more effective
to generate the features first, apply all the other transformations, and
at the very last stage reject the ones that correspond to stopwords.
Frequency information on the word counts can be quite useful in

reducing dictionary size and can sometimes improve predictive perfor-
mance for some methods. The most frequent words are often stopwords
and can be deleted. The remaining most frequently used words are
often the important words that should remain in a local dictionary.
The very rare words are often typos and can also be dismissed. For
some learning methods, a local dictionary of the most frequent words,
perhaps less than 200, can be surprisingly effective.
An alternative approach to local dictionary generation is to generate

a global dictionary from all documents in the collection. Special feature
selection routines will attempt to select a subset of words that appear
to have the greatest potential for prediction. These selection methods
are often complicated and independent of the prediction method. Gen-
erally, we do not use them and rely on just frequency information,
which is quite easy to determine. Any of the feature selection meth-
ods that have been used in alternative statistical or machine-learning
settings may be tried. Many of these have been developed for real
variables and without an emphasis on discrete or binary attributes.
Some text-specific methods will be described later on in Section 2.5.3,
but many of the prediction methods have already been adjusted for
text to deal with larger dictionaries rather than repeatedly generating
smaller dictionaries. If many classes must be determined, then the
generation of a smaller dictionary must be repeated for each predic-
tion problem. For example, if we have 100 topics to categorize, then
we have 100 binary prediction problems to solve. Our choices are 100
small dictionaries or one big one. Typically, the vectors implied by a
spreadsheet model will also be regenerated to correspond to the small
dictionary.

28 2. From Textual Information to Numerical Vectors

Instead of placing every possible word in the dictionary, we might fol-
low the path of the printed dictionary and avoid storing every variation
of the same word. The rationale for this is that all the variants really
refer to the same concept. There is no need for singular and plural.
Many verbs can be stored in their stem form. Extending the concept, we
can also map synonyms to the same token. Of course, this adds a layer
of complexity to the processing of text. The gains in predictive perfor-
mance are relatively modest, but the dictionary size will obviously be
reduced. Stemming can occasionally be harmful for some words. If we
apply a universal procedure that effectively trims words to their root
form, we will encounter occasions where a subtle difference in meaning
is missed. The words “exit” and “exiting” may appear to have identical
roots, but in the context of programming and error messages, they
may have different meanings. Overall, stemming will achieve a large
reduction in dictionary size and is modestly beneficial for predictive
performance when using a smaller dictionary.
In general, the smaller the dictionary, the more intelligence in its

composition is needed to capture the most and best words. The use of
tokens and stemming are examples of helpful procedures in composing
smaller dictionaries. All these efforts will pay off in improved manage-
ability of learning and perhaps improved accuracy. If nothing else is
gained, learning can proceed more rapidly with smaller dictionaries.
Once the set of features has been determined, the document col-

lection can be converted to spreadsheet format. Figure 2.5 shows an
example of how this can be done for binary features. An implementa-
tion of a similar algorithm is available in the accompanying software.
Each column in the spreadsheet corresponds to a feature. For inter-
pretability, we will need to keep the list of features to translate from
column number to feature name. And, of course, we will still need the
document collection to be able to refer back to the original documents
from the rows.
We have presented a model of data for predictive text mining in

terms of a spreadsheet that is populated by ones or zeros. These
cells represent the presence of the dictionary’s words in a docu-
ment collection. To achieve the best predictive accuracy, we might
consider additional transformations from this representation. Table
2.2 lists three different transformations that may improve predictive
capabilities.
Word pairs and collocations are simple examples of multiword fea-

tures discussed in more detail in Section 2.5.1. They serve to increase

2.5 Vector Generation for Prediction 29

Input:
fs, a set of k features
dc, a collection of n documents

Output: ss, a spreadsheet with n rows and k columns
Initialize: i := 1

for each document d in dc, do
j := 1
for each feature f in fs, do
m := number of occurrences of f in d
if (m > 0) then ss(row=i, col=j) := 1;
else ss(row=i, col=j) := 0 ;
endif
increment j by 1

endfor
increment i by 1

endfor
output ss

Figure 2.5. Converting Documents to a Spreadsheet

Table 2.2. Dictionary Feature Transformations

Word Pairs, Collocations
Frequencies
tf-idf

the size of the dictionary but can improve predictive performance in
certain scenarios.
Instead of zeros or ones as entries in the cells of the spreadsheet,

the actual frequency of occurrence of the word could be used. If a word
occurs ten times in a document, this count would be entered in the
cell. We have all the information of a binary representation, and we
have some additional information to contrast with other documents.
For some learning methods, the count does give a slightly better result.
It also may lead to more compact solutions because it includes the same
solution space as the binary data model, yet the additional frequency
information may yield a simpler solution. This is especially true of
some learning methods whose solutions use only a small subset of the
dictionary words. Overall, the frequencies are helpful in prediction but
add complexity to the proposed solutions. One compromise that works
quite well is to have a three-valued system for cell entries: a one or zero

30 2. From Textual Information to Numerical Vectors

Table 2.3. Thresholding Frequencies to Three Values

0 - word did not occur
1 - word occurred once
2 - word occurred 2 or more times

as in the binary representation, with the additional possibility of a 2.
Table 2.3 lists the three possibilities, where we map all occurrences of
more than two times into a maximum value of 2. Such a scheme seems
to capture much of the added value of frequency information without
adding much complexity to the model. Another variant involves zeroing
values below a certain threshold on the plausible grounds that tokens
should have a minimum frequency before being considered of any use.
This can reduce the complexity of the spreadsheet significantly and
might be a necessity for some data-mining algorithms. Besides simple
thresholding, there are a variety of more sophisticated methods to re-
duce the spreadsheet complexity such as the use of chi-square, mutual
information, odds ratio and others. Mutual information can be helpful
when considering multiword features.
The next step beyond counting the frequency of a word in a document

is to modify the count by the perceived importance of that word. The
well-known tf-idf formulation has been used to compute weightings or
scores for words. Once again, the values will be positive numbers so
that we capture the presence or absence of the word in a document.
In Equation (2.1), we see that the tf-idf weight assigned to word j is
the term frequency (i.e., the word count) modified by a scale factor
for the importance of the word. The scale factor is called the inverse
document frequency, which is given in Equation (2.2). It simply checks
the number of documents containing word j (i.e., df (j)) and reverses
the scaling. Thus, when a word appears in many documents, it is con-
sidered unimportant and the scale is lowered, perhaps near zero. When
the word is relatively unique and appears in few documents, the scale
factor zooms upward because it appears important.

tf-idf(j) = tf(j) ∗ idf(j). (2.1)

idf(j) = log
(

N
df(j)

)
. (2.2)

Alternative versions of the basic tf-idf formulation exist, but the gen-
eral motivation is the same. The net result of this process is a positive
score that replaces the simple frequency or binary true-or-false entry in
the cell of our spreadsheet. The bigger the score, the more important its

2.5 Vector Generation for Prediction 31

expected value to the learning method. Although this transformation is
only a slight modification of our original binary-feature model, it does
lose the clarity and simplicity of the earlier presentation.
Another variant is to weight the tokens from different parts of the

document differently. For example, the words in the subject line of a
document could receive additional weight. An effective variant is to
generate separate sets of features for the categories (for each category,
the set of features is derived only from the tokens of documents of that
category) and then pool all the feature sets together.
All of these models of data are modest variations of the basic binary

model for the presence or absence of words. Which of the data transfor-
mations are best? We will not give a universal answer. Experience has
shown that the best prediction accuracy is dependent on mating one
of these variations to a specific learning method. The best variation
for one method may not be the one for another method. Is it neces-
sary to test all variations with all methods? When we describe the
learning methods, we will give guidelines for the individual methods
based on general research experience. Moreover, some methods have
a natural relationship to one of these representations, and that alone
would make them the preferred approach to representing data.
Much effort has been expended in transforming this word model

of data into a somewhat more cryptic presentation. The data remain
entries in the spreadsheet cells, but their value may be less intelligible.
Some of these transformations are techniques for reducing duplication
and dimensions. Others are based on careful empirical experimenta-
tion that supports their value in increased predictive capabilities. We
will discuss several classes of prediction methods. They tend to work
better with different types of data transformations.
Although we describe data as populating a spreadsheet, we expect

that most of the cells will be zero. Most documents contain a small
subset of the dictionary’s words. In the case of text classification, a text
corpus might have thousands of word types. Each individual document,
however, has only a few hundred unique tokens. So, in the spreadsheet,
almost all of the entries for that document will be zero. Rather than
store all the zeros, it is better to represent the spreadsheet as a set
of sparse vectors, where a row is represented by a list of pairs, one
element of the pair being a column number and the other element
being the corresponding nonzero feature value. By not storing the ze-
ros, savings in memory can be immense. Processing programs can be
easily adapted to handle this format. Figure 2.6 gives a simple example

32 2. From Textual Information to Numerical Vectors

Spreadsheet Sparse Vectors
0 15 0 3 (2,15) (4,3)
12 0 0 0 (1,12)
8 0 5 2 (1,8) (3,5) (4,2)

Figure 2.6. Spreadsheet to Sparse Vectors

of how a spreadsheet is transformed into sparse vectors. All of our
proposed data representations are consistent with such a sparse data
representation.

2.5.1 Multiword Features
Generally, features are associated with single words (tokens delimited
by white space). Although this is reasonable most of the time, there
are cases where it helps to consider a group of words as a feature. This
happens when a number of words are used to describe a concept that
must be made into a feature. The simplest scenario is where the feature
space is extended to include pairs of words. Instead of just separate
features for bon and vivant, we could also have a feature for bon vi-
vant. But why stop at pairs? Why not consider more general multiword
features?
The most common example of this is a named entity, for exampleDon

Smith or United States of America. Unlike word pairs, the words need
not necessarily be consecutive. For example, in specifying Don Smith
as a feature, we may want to ignore the fact that he has a middle name
of Leroy that may appear in some references to the person. Another
example of a multiword feature is an adjective followed by a noun, such
as broken vase. In this case, to accommodate many references to the
noun that involve a number of adjectives with the desired adjective not
necessarily adjacent to the noun, we must permit some flexibility in the
distance between the adjective and noun. In the same example of the
vase, we want to accept a phrase such as broken and dirty vase as an
instance of broken vase. An even more abstract case is when words sim-
ply happen to be highly correlated in the text. For instance, in stories
about Germany boycotting product Y, the word-stem German would be
highly correlated with the wordstem boycott within a small window
(say, five words). Thus, more generally, multiword features consist of x
number of words occurring within a maximum window size of y (with
y ≥ x naturally).

The key question is how such features can be extracted from text.
How smart do we have to be in finding such features? Named enti-

2.5 Vector Generation for Prediction 33

Input:
ts, sequence of tokens in the document collection
k, the number of features desired
mwl, maximum length of multiword
mws, maximum span of words in multiword
slvl, correlation threshold for multiword features
mfreq, frequency threshold for accepting features

Output:
fs, a set of k features

Initialize:
hs := empty hashtable

for each tok in ts do
Generate a list of multiword tokens ending in tok.
This list includes the single-word tok and uses the inputs mws and mwl.
Call this list mlist.
for each mtok in mlist do

If hs contains mtok then
i := value of mtok in hs
increment i by 1

else
i := 1

endif
store i as value of mtok in hs

endfor
endfor
sk := keys in hs sorted by decreasing value
delete elements in sk with a frequency < mfreq
delete multiword elements in sk with an association measure < slvl
fs := top k keys in sk
output fs

Figure 2.7. Generating Multiword Features from Tokens

ties can be extracted using specialized methods. For other multiword
features, a more general approach might be to treat them like single-
word features. If we use a frequency approach, then we will only
include those combinations of words that occur relatively frequently.
A straightforward implementation would simply examine all combina-
tions of up to x words within a window of y words. Clearly, the number
of potential features grows significantly when multiword features are
considered.
Measuring the value of multiword features is typically done by

considering correlation between the words in potential multiword fea-
tures. A variety of measures based on mutual information or the

34 2. From Textual Information to Numerical Vectors

likelihood ratio may be used for this purpose. In the accompanying
software, Equation (2.3), which computes an association measure AM
for the multiword T, is used for evaluating multiword features, where
size(T) is the number of words in phrase T and freq(T) is the number
of times phrase T occurs in the document collection.

AM(T) =
size(T) log10(freq(T))freq(T)∑

wordi∈T freq(wordi)
(2.3)

Other variations can occur depending on whether stopwords are
excluded before building multiword features.
An algorithm for generating multiword features is shown in Figure

2.7, which extends Figure 2.4 to multiword features. A straightforward
implementation can consume a lot of memory, but a more efficient im-
plementation uses a sliding window to generate potential multiwords
in a single pass over the input text without having to store too many
words in memory. A version of this is implemented in the accompanying
software.
Generally, multiword features are not found too frequently in a

document collection, but when they do occur they are often highly pre-
dictive. They are also particularly satisfying for explaining a learning
method’s proposed solution. The downside to using multiwords is that
they add an additional layer of complexity to the processing of text,
and some practitioners may feel it’s the job of the learning methods to
combine the words without a preprocessing step to compose multiword
features. However, if the learning method is not capable of doing this,
the extra effort may be worthwhile because multiwords are often highly
predictive and enhance the interpretability of results.

2.5.2 Labels for the Right Answers
For prediction, an extra columnmust be added to the spreadsheet. This
last column of the spreadsheet, containing the label, looks no different
from the others. It is a one or zero indicating that the correct answer is
either true or false. What is the label? Traditionally, this label has been
a topic to index the document. Sports or financial stories are examples
of topics. We are not making this semantic distinction. Any answer
that can be measured as true or false is acceptable. It could be a topic
or category, or it could be an article that appeared prior to a stock
price’s rise. As long as the answers are labeled correctly relative to the
concept, the format is acceptable. Of course, that doesn’t mean that the
problem can readily be solved. In the sparse vector format, the labels

2.5 Vector Generation for Prediction 35

are appended to each vector separately as either a one (positive class)
or a zero (negative class).

2.5.3 Feature Selection by Attribute Ranking
In addition to the frequency-based approaches mentioned earlier, fea-
ture selection can be done in a number of different ways. In general,
we want to select a set of features for each category to form a local
dictionary for the category. A relatively simple and quite useful method
for doing so is by independently ranking feature attributes according to
their predictive abilities for the category under consideration. In this
approach, we can simply select the top-ranking features.
The predictive ability of an attribute can be measured by a certain

quantity that indicates how correlated a feature is with the class label.
Assume that we have n documents, and xj is the presence or absence
of attribute j in a document x. We also use y to denote the label of
the document; that is, the last column in our spreadsheet model. A
commonly used ranking score is the information gain criterion, which
can be defined as

IG(j) = Llabel − L(j),

where

Llabel =
1∑

c=0

Pr(y = c) log2
1

Pr(y = c)
, (2.4)

L(j) =
1∑

v=0

Pr(xj = v)
1∑

c=0

Pr(y = c|xj = v) log2
1

Pr(y = c|xj = v)
. (2.5)

The quantity L(j) is the number of bits required to encode the label
and the attribute j minus the number of bits required to encode the
attribute j. That is, L(j) is the number of bits needed to encode the
label given that we know the attribute j. Therefore, the information
gain Llabel − L(j) is the number of bits we can save for encoding the
class label if we know the feature j. Clearly, it measures how useful a
feature j is from the information-theoretical point of view.
Since Llabel is the same for all j, we can simply compute L(j) for all at-

tributes j and select the ones with the smallest values. Quantities that
are needed to compute L(j) in Equation (2.5) can be easily estimated

36 2. From Textual Information to Numerical Vectors

using the following plug-in estimators:

Pr(xj = v) =
freq(xj = v) + 1

n + 2
,

Pr(y = c|xj = v) =
freq(xj = v, label = c) + 1

freq(xj = v) + 2
.

2.6 Sentence Boundary Determination

If the XML markup for a corpus does not mark sentence boundaries,
it is often necessary for these to be marked. At the very least, it is
necessary to determine when a period is part of a token and when it
is not. For more sophisticated linguistic parsing, the algorithms often
require a complete sentence as input. We shall also see other informa-
tion extraction algorithms that operate on text a sentence at a time.

Input: a text with periods
Output: same text with End-of-Sentence (EOS) periods identified

Overall Strategy:
1. Replace all identifiable non-EOS periods with another character
2. Apply rules to all the periods in text and mark EOS periods
3. Retransform the characters in step 1 to non-EOS periods
4. Now the text has all EOS periods clearly identified

Rules:
All ? ! are EOS
If " or ’ appears before period, it is EOS
If the following character is not white space, it is not EOS
If)}] before period, it is EOS
If the token to which the period is attached is capitalized

and is < 5 characters and the next token begins uppercase,
it is not EOS

If the token to which the period is attached has other periods,
it is not EOS

If the token to which the period is attached begins with a lowercase
letter and the next token following whitespace is uppercase,
it is EOS

If the token to which the period is attached has < 2 characters,
it is not EOS

If the next token following whitespace begins with $({["’ it is EOS
Otherwise, the period is not EOS

Figure 2.8. End-of-Sentence Detection Algorithm

2.7 Part-Of-Speech Tagging 37

For these algorithms to perform optimally, clearly the sentences must
be identified correctly. Sentence boundary determination is essentially
the problem of deciding which instances of a period followed by white-
space are sentence delimiters and which are not since we assume that
the characters ? and ! are unambiguous sentence boundaries. Since
this is a classification problem, one can naturally invoke standard
classification software on training data and achieve accuracy of more
than 98%. This is discussed at some length in Section 2.12. However, if
training data are not available, one can use a hand-crafted algorithm.
Figure 2.8 gives an algorithm that will achieve an accuracy of more

than 90% on newswire text. Adjustments to the algorithm for other
corpora may be necessary to get better performance. Notice how the
algorithm is implicitly tailored for English. A different language would
have a completely different procedure but would still involve the basic
idea of rules that examine the context of potential sentence boundaries.
A more thorough implementation of this algorithm is available in the
accompanying software.

2.7 Part-Of-Speech Tagging

Once a text has been broken into tokens and sentences, the next step
depends on what is to be done with the text. If no further linguistic
analysis is necessary, one might proceed directly to feature generation,
in which the features will be obtained from the tokens. However, if
the goal is more specific, say recognizing names of people, places, and
organizations, it is usually desirable to perform additional linguistic
analyses of the text and extract more sophisticated features. Toward
this end, the next logical step is to determine the part of speech (POS)
of each token.
In any natural language, words are organized into grammatical

classes or parts of speech. Almost all languages will have at least
the categories we would call nouns and verbs. The exact number of
categories in a given language is not something intrinsic but depends
on how the language is analyzed by an individual linguist.
In English, some analyses may use as few as six or seven categories

and others nearly one hundred. Most English grammars would have as
a minimum noun, verb, adjective, adverb, preposition, and conjunction.
A bigger set of 36 categories is used in the Penn Tree Bank, constructed
from theWall Street Journal corpus discussed later on. Table 2.4 shows
some of these categories.

38 2. From Textual Information to Numerical Vectors

Table 2.4. Some of the Categories in the Penn Tree Bank POS Set

Tag Description
CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or subordinating conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal
NN Noun, singular or mass
NNS Noun, plural
POS Possessive ending
UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-3rd person singular present
WDT Wh-determiner

Dictionaries showing word–POS correspondence can be useful but
are not sufficient. All dictionaries have gaps, but even for words found
in the dictionary, several parts of speech are usually possible. Return-
ing to an earlier example, “bore” could be a noun, a present tense verb,
or a past tense verb. The goal of POS tagging is to determine which of
these possibilities is realized in a particular text instance.
Although it is possible, in principle, to manually construct a

part-of-speech tagger, the most successful systems are generated
automatically by machine-learning algorithms from annotated cor-
pora. Almost all POS taggers have been trained on the Wall Street
Journal corpus available from LDC (Linguistic Data Corporation,
www.ldc.upenn.edu) because it is the most easily available large anno-
tated corpus. Although theWSJ corpus is large and reasonably diverse,
it is one particular genre, and one cannot assume that a tagger based
on the WSJ will perform as well on, for example, e-mail messages.
Because much of the impetus for work on information extraction has
been sponsored by the military, whose interest is largely in the pro-

2.8 Word Sense Disambiguation 39

cessing of voluminous news sources, there has not been much support
for generating large training corpora in other domains.

2.8 Word Sense Disambiguation

English words, besides being ambiguous when isolated from their POS
status, are also very often ambiguous as to their meaning or reference.
Returning once again to the example “bore,” one cannot tell without
context, even after POS tagging, if the word is referring to a person—
“he is a bore”—or a reference to a hole, as in “the bore is not large
enough.” The main function of ordinary dictionaries is to catalog the
various meanings of a word, but they are not organized for use by a
computer program for disambiguation. A large, long-running project
that focused on word meanings and their interrelationships is Word-
net, which aimed to fill in this gap. As useful as Wordnet is, by itself it
does not provide an algorithm for selecting a particular meaning for a
word in context. In spite of substantial work over a long period of time,
there are no algorithms that can completely disambiguate a text. In
large part, this is due to the lack of a huge corpus of disambiguated
text to serve as a training corpus for machine-learning algorithms.
Available corpora focus on relatively few words, with the aim of testing
the efficacy of particular procedures. Unless a particular text-mining
project can be shown to require word sense disambiguation, it is best
to proceed without such a step.

2.9 Phrase Recognition

Once the tokens of a sentence have been assigned POS tags, the next
step is to group individual tokens into units, generally called phrases.
This is useful both for creating a “partial parse” of a sentence and as a
step in identifying the “named entities” occurring in a sentence, a topic
we will return to in greater detail later on. There are standard corpora
and test sets for developing and evaluating phrase recognition systems
that were developed for various research workshops. Systems are sup-
posed to scan a text and mark the beginnings and ends of phrases, of
which the most important are noun phrases, verb phrases, and preposi-
tional phrases. There are a number of conventions for marking, but the
most common is to mark a word inside a phrase with I-, a word at the
beginning of a phrase adjacent to another phrase with B- and a word

40 2. From Textual Information to Numerical Vectors

outside any phrase with O. The I- and B- tags can be extended with
a code for the phrase type: I-NP, B-NP, I-VP, B-VP, etc. Formulated in
this way, the phrase identification problem is reduced to a classification
problem for the tokens of a sentence, in which the procedure must
supply the correct class for each token.
Performance varies widely over phrase type, although overall per-

formance measures on benchmark test sets are quite good. A simple
statistical approach to recognizing significant phrases might be to
consider multiword tokens. If a particular sequence of words occurs
frequently enough in the corpora, it will be identified as a useful token.

2.10 Named Entity Recognition

A specialization of phrase finding, in particular noun phrase finding, is
the recognition of particular types of proper noun phrases, specifically
persons, organizations, and locations, sometimes along with money,
dates, times, and percentages. The importance of these recognizers for
intelligence applications is easy to see, but they have more mundane
uses, particularly in turning verbose text data into a more compact
structural form.
From the point of view of technique, this is very like the phrase

recognition problem. One might even want to identify noun phrases
as a first step. The same sort of token-encoding pattern can be used
(B-person, B-location, I-person, etc), and the problem is then one of
assigning the correct class code to each token in a sentence. We shall
discuss this problem in detail in Chapter 6 on information extraction.

2.11 Parsing

The most sophisticated kind of text processing we will consider, briefly,
is the step of producing a full parse of a sentence. By this, we mean
that each word in a sentence is connected to a single structure, usually
a tree but sometimes a directed acyclic graph. From the parse, we can
find the relation of each word in a sentence to all the others, and
typically also its function in the sentence (e.g. subject, object, etc.).
There are very many different kinds of parses, each associated with
a linguistic theory of language. This is not the place to discuss these
various theories. For our purposes, we can restrict attention to the so-
called “context-free” parses. One can envision a parse of this kind as

2.11 Parsing 41

S

NP

N

Johnson

VP

VP

AUX

was

PPART

replaced

PP

PREP

at

PNOUN

PNOUN

XYZ

PNOUN

Corp

PP

PREP

by

PNOUN

Smith

Figure 2.9. Simple Parse Tree

Johnson was replaced at XYZ Corp. by Smith .

--

.----- subj(n) Johnson1(1) noun propn sg h m gname sname

o----- top be(2,1,3) verb vfin vpast sg vsubj

‘----- pred(en) replace1(3,7,1,u) verb ven vpass

‘--- vprep at1(4,6) prep pprefv staticp

| ‘- objprep(n) XYZ Corp.1(6) noun propn sg glom ctitle

‘--- subj(agent) by1(7,8) prep pprefv

‘- objprep(n) Smith1(8) noun propn sg h sname

Figure 2.10. Parse Tree—English Slot Grammar

a tree of nodes in which the leaf nodes are the words of a sentence,
the phrases into which the words are grouped are internal nodes, and
there is one top node at the root of the tree, which usually has the label
S. There are a number of algorithms for producing such a tree from
the words of a sentence. Considerable research has been done on con-
structing parsers from a statistical analysis of tree banks of sentences
parsed by hand. The best-known and most widely used tree bank is of
parsed sentences from the Wall Street Journal and is available from
LDC.
The reason for considering such a comparatively expensive process is

that it provides information that phrase identification or partial pars-
ing cannot provide. Consider a sentence such as “Johnson was replaced
at XYZ Corp. by Smith.” for which a simple parse is shown in Figure
2.9.

42 2. From Textual Information to Numerical Vectors

From the linear order of phrases in a partial parse, one might
conclude that Johnson replaced Smith. A parse that identifies the sen-
tence as passive has information allowing the extraction of the correct
“Smith replaced Johnson.” An example of a parse giving more informa-
tion than a simple tree is shown in Figure 2.10. The parse is the output
of the English Slot Grammar. In this example, the tree is drawn, using
printer characters, on its side, with the top of the tree to the left. Notice
in particular that the “by” phrase containing “Smith” is identified as
the agent, although “Johnson” is marked as the subject.

2.12 Feature Generation

Although we emphasized that our focus is on statistical methods, the
reason for the linguistic processing described earlier is to identify
features that can be useful for text mining. As an example, we will
consider how good features depend on the type of object to be classified
and how such features can be obtained using the processes discussed
so far.
Let us consider the problem of segmenting a text into sentences.

A hand-crafted algorithm for this task was given earlier. However,
let’s say we want to learn a set of similar rules from training data
instead. What sorts of features would we generate? Since the object to
be classified is a period, each feature vector corresponds to a period
occurring in the text. Now we need to consider what characteristics of
the surrounding text are useful features. From the algorithm, we can
see that the useful features are the characters or character classes near
the period, including the character of the token to which the period
is attached and the characters of the following token. Therefore, the
necessary linguistic processing only involves tokenization of the text.
A more sophisticated example would be the identification of the part

of speech (POS) of each word in a text. This is normally done on a text
that has first been segmented into sentences. The influence of one word
on the part-of-speech of another does not cross sentence boundaries.
The object that a feature vector represents is a token. Features that
might be useful in identifying the POS are, for example, whether or
not the first letter is capitalized (marking a proper noun), if all the
characters are digits, periods, or commas (marking a number), if the
characters are alternating uppercase letters and periods (an abbrevia-
tion), and so on. We might have information from a dictionary as to the
possible parts of speech for a token. If we assume the POS assignment

2.12 Feature Generation 43

goes left to right through a sentence, we have POS assignments of
tokens to the left as possible features. In any case, we have the identity
of tokens to the left and to the right. For example, “the” most likely
precedes either a noun or an adjective. So, for this task, we basically
need tokenization plus analysis of the tokens, plus perhaps some dic-
tionaries that tell what the possibilities are for each token in order to
create a feature vector for each token.
The feature vector for a document is assigned a particular class (or

set of classes). The feature vector for classifying periods as End-Of-
Sentence or not is assigned to one of two classes. The feature vector
for POS assignment has one of a finite set of classes. The class of the
feature vector for each token in the partial parsing task was outlined
above. These classes are not intrinsic or commonly agreed properties
of a token. They are invented constructs specific to the problem. Let us
consider what features are important for the feature vector for partial
parsing. Token identity is clearly one of these, as is the token POS.
Additionally, the identity and POS of the tokens to the left and right
of the token whose vector is being constructed are important features.
So is the phrasal class of tokens to the left that have already been as-
signed. Sentence boundaries are particularly important since phrases
do not cross them. Individual token features, on the other hand, are not
important because they have already been taken into account for POS
assignment.
For named entity detection, the same kind of token class encoding

scheme can be used as in the chunking task (i.e., B-Person, I-Person,
etc.). All the named entities are noun phrases, so it is possible but not
necessary that a sentence will first be segmented into noun phrases.
This might result in unnecessary work since named entities are typ-
ically made up of proper nouns. For this task, dictionaries can be
particularly important. One can identify tokens as instances of titles,
such as “Doctor” or “President,” providing clues as to the class of proper
noun phrases to the right. Other dictionaries can list words that are
typically the end of organization names, like “Company,” “Inc.,” or “De-
partment.” There are also widely available gazetteers (i.e., lists of place
names and lists of organization names). Identifying a token as being a
piece of such a dictionary entry is useful but not definitive because
of ambiguity of names (e.g., “Arthur Anderson” might be referring to
a person or to a company). Besides the dictionary information, other
useful features are POS, sentence boundaries, and the class of tokens
already assigned.

44 2. From Textual Information to Numerical Vectors

2.13 Historical and Bibliographical
Remarks

A detailed account of linguistic processing issues can be found in [Man-
ning and Schütze, 1999] and [Jurafsky and Martin, 2000]. Current
URLs for organizations such as LDC, ICAME, TEI, the Oxford Text
Archive, and the like are easily found through a search engine. The new
Reuters corpus, RCV1, is discussed in [Lewis et al., 2004] and is avail-
able directly from Reuters. The older Reuters-21578 Distribution 1.0
corpus is also available on the Internet at several sites. Using a search
engine with the query “download Reuters 21578” will provide a list of
a number of sites where this corpus can be obtained. There are a num-
ber of Web sites that have many links to corpora in many languages.
Again, use of a search engine with the query “corpus linguistics”
will give the URLs of active sites. There are many books on XML;
for example [Ray, 2001]. The best-known algorithm for derivational
regularization is the Porter stemmer [Porter, 1980], which is in the
public domain. At the time of this writing, it can be downloaded from
http://www.tartarus.org/∼martin/PorterStemmer. ANSI C, Java, and Perl
versions are available. Another variation on stemming is to base the
unification of tokens into stems on corpus statistics (i.e., the stemming
is corpus based) [Xu and Croft, 1998]. For information retrieval, this
algorithm is said to provide better results than the more aggressive
Porter stemmer.
For end-of-sentence determination, [Walker et al., 2001] compares

a hard-coded program, a rule-based system, and a machine-learning
solution on the periods and some other characters in a collection of
documents from the Web. The machine-learning system was best of the
three. The F-measures (see Section 3.5.1) were 98.37 for the machine-
learning system, 95.82 for the rule-based system, and 92.45 for the
program. Adjusting a machine-learning solution to a new corpus is
discussed in [Zhang et al., 2003].
Examples of part-of-speech taggers are [Ratnaparkhi, 1995] and

[Brill, 1995]. The Brill tagger is in the public domain and is in wide
use.
For a survey of work on word sense disambiguation, see [Ide

and Véronis, 1998]. Wordnet is discussed in [Feldbaum, 1998]. The
database and a program to use it can be obtained from the Internet
at http://www.cogsci.princeton.edu/∼wn/obtain.shtml.

2.13 Historical and Bibliographical Remarks 45

Phrase recognition is also known as “text chunking” [Sang and Buch-
holz, 2000]. A number of researchers have investigated this problem
as classification, beginning with Ramshaw and Marcus [Ramshaw
and Marcus, 1995]. A variety of machine-learning algorithms have
been used: support vector machines [Kudoh and Matsumoto, 2000],
transformation-based learning [Ramshaw and Marcus, 1995], a linear
classifier [Zhang et al., 2002], and others. Many more details can be
found at http://pi0657.uvt.nl/∼signll/conll.html.

Work on named entity recognition has been heavily funded by the
U.S. government, beginning with the Message Understanding Con-
ferences and continuing with the ACE project Further details can be
obtained from the following sites:

http://www.itl.nist.gov/iaui/894.02/related_projects/muc/index.html

http://www.itl.nist.gov/iaui/894.01/tests/ace/index.htm

A number of named entity recognition systems are available for license,
such as the Nymble system from BBN [Bikel et al., 1997]. State of the
art is about 90% in recognition accuracy.
Algorithms for constructing context-free parse trees are discussed

in [Earley, 1970] and [Tomita, 1985]. Constructing parsers from tree-
banks is discussed in [Charniak, 1997], [Ratnaparkhi, 1999], [Chiang,
2000], and others. A description of English Slot Grammar can be found
in [McCord, 1989]. A number of organizations have posted demo ver-
sions of their parsers on Web sites. These can be used to compare the
output of different parsers on the same input sentence. Three examples
of such sites are:

http://www.cs.kun.nl/agfl/

http://www.link.cs.cmu.edu/link/submit-sentence-4.html

http://www.lingsoft.fi/cgi-bin/engcg

Early work in feature generation for document classification includes
[Lewis, 1992], [Apté et al., 1994], and others. [Tan et al., 2002] showed
that bigrams plus single words improved categorization performance
in a collection of Web pages from the Yahoo Science groups. The better
performance was attributed to an increase in recall. A special issue
of the Journal of Machine Learning Research, in 2003 was devoted to
feature selection and is available online. One of the papers [Forman,
2003] presents experiments on various methods for feature reduction.
A useful reference on word selection methods for dimensionality re-
duction is [Yang and Pedersen, 1997], which discusses a wide variety

46 2. From Textual Information to Numerical Vectors

of methods for selecting words useful in categorization. It concludes
that document frequency is comparable in performance to expensive
methods such as information gain or chi-square.

3

Using Text for Prediction

The words prediction and forecast conjure up images of momentous
decisions and complex processes fraught with inaccuracies. From a
statistical perspective, it’s a straightforward problem that has a solu-
tion. Of course, the solution may not always be very good. The problem
presents itself as in Figure 3.1. Given a sample of examples of past
experience, we project to new examples. If the future is similar to the
past, we may have an opportunity to make accurate predictions. An
example of such a situation is where one tries to predict the future
share price of a company based on historical records of the company’s
share price and other measures of its performance.

Past
Cases

New Case

Prediction
for new case

Construct
Predictor

Predictor

Figure 3.1. Predicting the Future Based on the Past

48 3. Using Text for Prediction

Making a prediction requires more than a lookup of past experience.
Even if we effectively characterize these experiences in a consistent
way, the test of success is on new examples. For prediction, a pattern
must be found in past experience that will hold in the future, lead-
ing to accurate results on new, unseen examples. If a new example
presents itself in a form that is radically different from prior experi-
ence, learning from past experience will prove inadequate. Machine
learning and statistical methods do not learn from basic principles.
They have no ability to reason and reach new conclusions for new
situations. Still, perhaps surprisingly, many prediction problems can
be solved by finding patterns in prior experience. If samples can be
obtained and organized in the right format, finding patterns is almost
effortless, even in very high-dimensional feature spaces.
The classical prediction problem for text is called text categorization.

Here, a set of categories is predefined, and the objective is to assign
a category or topic to a new document. For example, we can collect
newswire articles and describe a set of topics such as financial or sports
stories. The set of topics is fixed. When news arrives, the words are
examined, and articles are assigned topics from a fixed list of possible
topics.
However, characterizing all prediction from text as text categoriza-

tion is too narrow. Prediction from text can be just as ambitious as
prediction for numerical data mining. In statistical terms, prediction
has a very specific characterization, and it need not deal with just
topic assignment to documents. Prediction for text follows the classical
lines of all numerical classification problems, and we can use a tradi-
tional model of data that applies to any sampling application where the
answers are presented as true or false.
The prediction problem for text is generally a classification problem.

In our spreadsheet model of data, we have the usual rows and columns,
where a row is an example and a column is an attribute to be measured.
For classification, we have an additional column, a label identifying the
correct answer. For text, the answer is something that is true or false.
For example, the labels for a stock price prediction problem may be a 1
for a stock price that goes up and a 0 for unchanged or down.
Figures 3.2 and 3.3 are abstract templates of spreadsheets that

might be composed for prediction. Figure 3.2 is the classical text cat-
egorization application, where the goal is to filter spam e-mail from
valid e-mail. Figure 3.3 illustrates that document classification might
be explicitly predictive. The examples are words found in news stories

3.1 Recognizing that Documents Fit a Pattern 49

. . . unsubscribe . . . enlargement . . . ink . . . spam

. . . yes . . . yes . . . yes . . . true

. . . no . . . no . . . no . . . false

. .

Figure 3.2. Abstract Spreadsheet for Spam Prediction

. . . profits . . . increased . . . earnings . . . stock-price

. . . yes . . . yes . . . yes . . . 1

. . . yes . . . no . . . yes . . . 0

. .

Figure 3.3. Abstract Spreadsheet for Predicting Stock Price

about companies, and the labels are whether the stock price rose in
some time period following the article.
So far, we have not shied away from describing text as unstruc-

tured data that can be converted into structured data, where classical
machine-learning methods can be applied. There remain many nu-
ances in the recipe that do not alter this worldview but can make
our trip to obtaining good results more direct. Let’s look at predictive
methods from the perspective of text and our experience in choosing
the best route for their application.

3.1 Recognizing that Documents Fit a
Pattern

What kinds of documents are we talking about? These are gener-
ally documents in digital form that can be accessed by computer.
While they could be as large as a book or a manual, they are more
likely to be relatively brief. The prototypical digital document is a
newswire or magazine article. Larger documents, such as books, are
more structured and are composed of smaller subcomponents such as
chapters.
If we pool all the words in a document collection, we often have

a large dictionary representing the complete set of words appearing
in all documents. It is not unusual for the global dictionary to have
hundreds of thousands of words. Yet a local dictionary, taken relative
to documents only for a single topic, can be far smaller. As seen in the
previous chapter, given a document and a dictionary, we can encode
the document as a vector of numbers, in the simplest form a vector

50 3. Using Text for Prediction

word1 word2 word3 word4 word5 . . . wordN label
0 1 1 1 0 . . . 1 1
1 0 1 0 0 . . . 1 0
1 1 0 1 1 . . . 0 1
0 1 0 0 1 . . . 1 0
1 1 1 1 0 . . . 1 1
0 1 0 1 1 . . . 0 1
1 0 1 1 0 . . . 1 0
0 1 1 1 1 . . . 0 1

Figure 3.4. Predictive Patterns in a Spreadsheet

word1 word2 word3 word4 word5 . . . wordN label
0 1 0 1 0 . . . 1 1
1 0 1 0 0 . . . 0 0
1 0 0 1 1 . . . 0 1
0 1 0 0 1 . . . 1 0
1 0 0 1 0 . . . 1 1
0 1 0 0 1 . . . 0 1
0 0 1 1 0 . . . 0 0
0 0 1 0 1 . . . 0 1

Figure 3.5. Spreadsheet with no Obvious Patterns

of ones and zeros, representing the presence or absence of individual
words. Most of the entries will be zero. This concept of sparseness of
words for a document or topic is consistent with the notion of finding
a pattern of words that is characteristic of a label. To be successful
in prediction, we expect to find common characteristics—patterns of
words in documents. Once again, these patterns will refer to only a
small space of the words that occur in the subset of documents with
the same label.
The spreadsheet of Figure 3.4 is an idealized view of words that

form a pattern. For prediction, we examine patterns relative to a la-
bel, where the label is the correct answer. The label is true or false,
represented by a zero or one in the last column. We see that the same
two words (Word2 and Word4) always occur for class 1 and never occur
together for class 0. A pattern is formed when a combination of words
occurs for the class of interest and not for the negative class.
For all applications of data mining, the accuracy of predictions is

dependent on the predictive quality of the attributes. For text mining,
these are words or stemmed words. Not all labels can be discriminated.
Even people can have a tough time predicting where a stock price may
move in a week, whereas they may find it easier to forecast their income

3.2 How Many Documents Are Enough? 51

for the next week. In contrast to Figure 3.4, in Figure 3.5, we see no
obvious predictors for class 1. No simple pattern is found that separates
the two classes. For an ideal pattern using only a single word, a 1 is
found in the word’s cell when the class is one and a 0 when the class is
zero.

3.2 How Many Documents Are Enough?

Predictive text mining needs samples of prior experience. From these
samples, a method learns how to make predictions on new docu-
ments. The classic application is text categorization where newswire
stories are classified by topic. Because any story may be assigned
more than one topic, the application is decomposed into many binary
problems, one for each topic. Although it is possible to assemble a
collection of many thousands of documents, the sample of documents
for building predictors must come with labels. This initial assignment
of labels is likely to require human intervention, and the effort may
be a time-consuming process. We may think of text mining as a com-
pletely automated process, but, in reality, the assignment of labels is a
bottleneck.
The collection of documents may be very large, yet the number of

examples for some topics may be very small. If it’s a rare topic, it may
be so distinctive that only a few documents will be sufficient to capture
its distinctions from other topics. If the topic is not obviously different
from others, then additional documents for that topic may be needed,
an objective that is sometimes difficult to meet.
Even after assembling a representative sample covering all topics,

the task of acquiring data is not complete. A document collection may
evolve over time. News stories have a short life span. The popular
stories of one year may be of no interest in later years. The topics may
be relatively stable, but the representative documents for a topic may
vary over time. Even if the sample is changing only slowly, provisions
must be made to relearn from the data.
In contrast to many other applications of data mining, text mining

provides advantages to the developers of predictive models. For many
data-mining applications, the developers process the data but have
only a superficial understanding of the measurements. They accept
what they are given by the domain experts and do not have a deep un-
derstanding of the measurements or their relationship with each other.
Results are analyzed primarily by empirical analysis. When something

52 3. Using Text for Prediction

goes awry, we may have difficulty in attributing this to problems with
the collection process or the specification of the features. For text min-
ing, we are much closer to understanding the data, and we all have
some expertise. The document is text. We can read and comprehend
it, and we analyze a result by going directly to the documents of in-
terest. We can also look at the words forming a pattern for prediction
and make judgments about the relevance of those words for a specific
prediction class.
How many cases are enough to learn from the sample? Given the

characteristics of our sample as outlined above, we cannot directly
answer that question. Instead, we depend on correct evaluation of
proposed solutions, giving us a good idea of their future performance.
We are particularly concerned in the early stages of learning from a
small sample, anticipating a need for more documents. Some learning
methods may be augmented by artificial cases or human-engineered
decision rules. Our main focus is on learning and feedback from an
evaluation of results without anticipating the likely success of learning
from any size sample.

3.3 Document Classification

Classification is a well-understood problem. A sample is collected. The
data are organized in a structured format. Every example is measured
in the same way. The answer is expressed in terms of true or false, a
binary decision. In mathematical terms, a solution is a function that
maps examples to labels, f : w → L, where w is a vector of attributes
and L is a label. In our case, the attributes are words or tokens. The
labels can be a goal that is potentially related to the words. Most
prior research has been done on indexing, where the label is a broad
topic, such as categorizing a document as a sports story. But the label
could be anything from a security threat to the direction of stock price
movements.
Figure 3.6 illustrates the task in terms of spreadsheets. The first

spreadsheet is complete and all cells are filled in. The second spread-
sheet has the identical format. The columns have the same meaning
in both spreadsheets, the examples are different. Missing from the sec-
ond spreadsheet are the values of the last column. The objective for a
learning method is to learn from the first spreadsheet some model that
can predict the values of the last column for the second spreadsheet.
Because the examples or rows are not identical, the method cannot

3.3 Document Classification 53

Figure 3.6. Learning and Applying Models

employ direct lookup of the first spreadsheet. It needs to find a gener-
alization of the first spreadsheet that will hold on the new examples in
the second spreadsheet.
In Figure 3.6, we learn from the first spreadsheet and apply the

inferred model to a new spreadsheet. In statistical terms, we draw a
sample from a population, learn from it, and then apply the induced
model to new, unlabeled examples drawn from the same population.
In classification theory, a new sample and its examples are expected
to be i.i.d., independently and identically drawn. In many situations of
text mining, this assumption cannot be expected to hold. If we sample
newswires, we know that the types of stories will change over time. The
population is not stationary; it changes. Still, we can apply classifica-
tion methods, and with a proper data representation and appropriate
evaluation techniques, these learning methods can be effective. We ex-
pect that the nature of the documents will remain relatively stable over
some time frame, sometimes for a relatively short window of time. For
text categorization, the topics and the rules for their assignment will
typically not vary greatly over weeks or even months, even though the
“hot” topics in the news might change. Over longer periods, documents
in the training sample may be discarded and new ones added, and the
learning process may then be repeated.

54 3. Using Text for Prediction

3.4 Learning to Predict from Text

We start with a sample of documents. The initial collection of doc-
uments has been mapped into a spreadsheet. From the spreadsheet
representation, we expect to learn some decision criteria to classify
new examples. Figure 3.7 describes the overall process.
The measurements that we consider have their roots among the well-

known classification methods for learning from data. Are we going to
review the massive literature of classification-learning methods? Not at
all. The many experiments reported in the research literature point us
in the direction of the best methods for text. Moreover, these methods
have been developed to work with sparse data where the spreadsheet
cells are mostly zeros.
We are using editorial license to choose the most interesting and

effective predictive methods. In addition, we are choosing specific styles
and formats for preparing the data. Thus, we may run one method
with a binary representation for words and another method with tf-idf
transformations. Why do we choose a specific combination of technique
and representation? We and other researchers have some experience
with this issue. You may try every variation, but we have reached a
stage where we consistently apply a method in a specialized way.
The four types of methods can be differentiated by the distinc-

tive representations of their solutions. These are the nearest-neighbor
methods, logic methods, probabilistic methods, and weighted-scoring
methods. We will present a learning method from each of these cat-
egories not because we are democratic but simply because these are
the most widely used and effective methods. Our problem may be
very high-dimensional, but it is also more specialized. The methods
will be adapted and in most cases simplified to take advantage of our
expectations for text. Let us examine these methods in more detail.

Document
Collection

Learning
Method

Data

Preparation

Document
Classifier

Spreadsheet

Figure 3.7. From Text to Classifiers

3.4 Learning to Predict from Text 55

3.4.1 Similarity and Nearest-Neighbor Methods
Finding the nearest neighbors of a document is a process with which
we are all familiar. When using a search engine, we present some key
words, and the search engine returns its nearest-matching documents,
This is a specific type of information retrieval where the new document
is only a few key words. The more general problem is to take a new
unlabeled document and predict its label. Why not just look up the
words of the new document in a stored repository of labeled documents?
If the new document consists of a few words, it is likely that some stored
document will match those words. That’s what happens with a search
engine where many documents are returned to match the key words.
Our problem is a variation on this same theme of matching a new

document to old ones. In the context of text mining, the problem is one
of information retrieval; the more general approach is called nearest-
neighbor methods. A complete document will have many words, and it
is unlikely that it will completely match a stored document. Instead
of an exact match, we try to find the closest matches to the stored
documents. We might pull out, for example, the ten best matches, look
at their labels, and pick the label that occurs most frequently. This
simple process, shown in Figure 3.8, is the basic algorithm for nearest-
neighbor methods. In fact, it is one of the most prominent approaches
to prediction for text.

1. Compute the similarity of newDoc to all documents in
collection {D(l)}.

2. Select the k documents that are most similar to newDoc.

3. The answer is the label that occurs most frequently in the
k selected documents.

Figure 3.8. Basic Nearest-Neighbor Algorithm for Documents

In our example, we decided to pull out the ten best matches. This
gets generalized to pulling out the k best matches. But how do we
determine k? At one extreme, k could be 1 and we could always take the
single most similar document. In general though, looking at a group of
similar documents will give a more accurate answer. Do you usually
rely solely on a search engine’s top answer? Often, the best answer
occurs in the top ten or so matches. The formal name for the method is
k-nearest neighbors, and finding k makes life somewhat more difficult.

56 3. Using Text for Prediction

Figure 3.9. Finding Similar Documents

k can be estimated by experimental procedures. These will be discussed
in Section 3.5, where we review evaluation of performance. In most
situations, we will have many binary prediction problems to solve. In
text categorization, we have many topics to assign. To determine a
distinct k for each topic would be a tedious task indeed. In practice, a
single value of k would be used for almost all categories, with a smaller
k for those topics where the number of positive examples is less than k.
How hard is it to find documents that are similar to a new doc-

ument? Our documents have been transformed to spreadsheet data.
Each document is now a vector of numbers. Figure 3.9 is a graphic of
the overall process. The new document is embodied in a vector. That
vector is compared to all the other vectors, and a score for similarity is
computed.

3.4.2 Document Similarity
Most nearest-neighbor applications compare two examples by measur-
ing the distance between two examples. Equation (3.1) is a general
distance measure used to compare two examples. This is simply the
difference between each attribute squared. Absolute values could also
be used. The larger the distance, the weaker the connection between
the examples.

distance(x, y) = (x1 − y1)2 + · · ·+ (xm − ym)2. (3.1)

For text, a more natural measure is used, which is called similarity.
When are two documents similar? One view is that they share the
same words. The most elementary measure of similarity is to count the
number of words that two documents have in common. We can then
rank the document by similarity, where the most similar documents
have the most shared words. Notice that unlike traditional metrics for

3.4 Learning to Predict from Text 57

New
Document

Measure
Similarity

Similarity
Scores

Labeled
Spreadsheet

Vector

1

0

1

1

1

1

1
1

1
1

1
1

1

11

1

1

1
0

0 0 0
0 0 0 0

0 0 0
0 0

0

0
0 0 0

0

0 0

2
1
0
1
1
1
2

Figure 3.10. Computing Similarity Scores for Documents

computing distance, this one ignores words that occur in one document
but not in the other. We are only interested in words that occurred in
both documents. Traditional nearest-neighbor methods usually do not
do well with very high dimensions of attributes, in our case thousands
of words, where most of the spreadsheets are populated with zeros.
One reason for this is the inappropriate distance measure they tend to
use. By using similarity as a metric, nearest-neighbor methods become
quite practical and effective.
Using a spreadsheet, Figure 3.10 is an example of a computation of

similarity. When a new document is presented, it is compared to every
document in the stored collection. Once in spreadsheet format, the
comparison may seem time-consuming, but actually it is fast and easy.
For every positive word in the new document, we count their number
of occurrences in the stored documents. Similarity, S, is the number of
positive words found in both a stored document and the new document.
With thousands of dictionary words, the number of attributes is huge,
creating a very difficult task for these methods. The use of only positive
words for similarity seems to eliminate the noise of the zeros, giving
extra justification for using the sparse representation.
Is this the best similarity measure for document comparisons? Ear-

lier, we described several ways of representing the measurements in
the spreadsheets, including binary, frequency, and tf-idf. All are varia-
tions on the same theme, where the additional complexity is an attempt
to weigh the quality and importance of the measure. In practice, us-
ing the tf-idf variation will usually give the best predictive results for
similarity methods. The actual computation of distance in this case is
called the cosine similarity and has been widely used for information

58 3. Using Text for Prediction

retrieval. We will wait until Chapter 4 to amplify on cosine similarity.
This is not the only measure that has been used with good results for
many applications. The weighting of tf-idf with a normalization con-
stant involving document length seems to help in achieving somewhat
better results than a pure count of shared words.
Information retrieval traditionally deals with finding relevant doc-

uments in response to a query. A search engine is the embodiment
of modern information retrieval. Yet, the same ideas can be used for
another purpose. Here the specific documents retrieved are not our
prime interest, but their labels are of paramount importance.
Research on information retrieval has developed efficient methods

for computing similarity. Clearly, to sequentially compare new docu-
ments to all the stored ones is an inefficient process. Knowing that
the spreadsheet is sparsely populated, being mostly zeros, allows for
the creation of additional data structures that point to the positive
entries. This can dramatically improve efficiency and will be discussed
in Chapter 4.
The nearest-neighbor method requires no special effort to learn from

the data and provides no special value in finding generalized patterns
in the data. It’s just a retrieval program and under the best of circum-
stances will require more computation time to apply than most other
methods. The main advantage is the virtually zero training effort: just
collect the documents and store them.
We now turn our attention to other methods that are more com-

patible with the concept of learning from the documents and finding
explicit patterns. Their solutions are insightful and compact. Once a
solution is found and expressed as a new model, the original sample
has a diminished role and is possibly discarded. The most intuitively
appealing types of solutions are based on decision rules. We look at
these next.

3.4.3 Decision Rules
Just as the nearest-neighbor method can be viewed as a special invo-
cation of a search engine, another method, decision rules, can also be
viewed from the same perspective. For the nearest-neighbor method,
the search string is the new, unlabeled document, and the most similar
documents are retrieved. Only after retrieval are the labels examined
to assign the class label of the new document. Although of paramount
importance to classification, the labels are secondary to the search
process.

3.4 Learning to Predict from Text 59

shr→ earn
div→ earn
dividend→ earn
payout→ earn
qtr→ earn
earnings & sees→ earn
quarter & cts→ earn
split→ earn
profit→ earn
OTHERWISE→ ∼earn

Figure 3.11. Decision Rules for Document Classification

How about reversing the search process? Look at the documents
that are retrieved, and then generate the search string that would
retrieve exactly these documents. That’s precisely what a decision rule
method attempts to do. The initial sample is a collection of labeled
documents. The positive documents are examples of documents that
would be retrieved from some hypothetical search string (or strings),
and the negative examples are documents that should not be retrieved.
The problem is to find one or more patterns that would produce those
positive examples. The patterns are the same search strings that we
employ when we use a search engine: a phrase of one or more words
that must occur together to match a document. These patterns are
therefore the rules for the group of positive examples.
When a new, unlabeled document is presented, we assign its label

depending on whether any of the rules are satisfied (i.e., the patterns
are found in the document). If all words in any rule are found, the
document’s label is positive. Otherwise, it is negative.
Figure 3.11 is an example of a set of decision rules induced from

a well-known collection of Reuters newswires. The topic is earnings
reports. Each rule is a phrase, simply a conjunction of words. If any of
these phrases are found, the earnings label would be assigned as the
topic. Otherwise, the last rule gets satisfied and it would be labeled as
not being an earnings report.
In many categorization applications, the categorizer is just a means

to assign a label. The primary objective is to get the label right. For
decision rule categorizers, the objective can be broadened. Because the
rules are composed of words, and words have meaning, the rules them-
selves can be insightful. They can expand our knowledge and suggest
reasons for reaching a conclusion. More than just attempting to assign

60 3. Using Text for Prediction

a label, such as a topic, to a new document, a set of decision rules
induced from a collection of documents may help summarize how to
make decisions. For example, the rules may suggest a pattern of words
found in newswires prior to the rise of a stock price. Of course, for
this example, we would be extremely lucky (and wealthy!) if we were to
find such patterns that were also highly predictive, but it still drives
home the general advantage of rules over other categorizers: patterns
of words have more potential in expanding our base of knowledge and
supporting our decisions than rudimentary scores or measures of sim-
ilarity. The downside of rules is that they can be less predictive if the
underlying concept is complex. However, even in these situations, they
can lead to insights into the nature of the key predictive words and
phrases.
Although decision rules can be particularly satisfying solutions for

text mining, the procedures for finding them are more complicated
than other methods. The expectation is that a relatively small num-
ber of words and phrases will provide a good solution. Yet, the search
for these words and phrases that distinguish one class from the other
can be time-consuming and complex. Let’s assume that all cells in the
spreadsheet are binary-valued, with each entry indicating the presence
or absence of a word. Because our prediction problem is binary classi-
fication, we can readily apply standard procedures to learn the rules.
The primary steps are the following:

1. Find a covering rule set that completely separates the two classes.

2. Prune the rule set into a sequence of smaller rule sets.

• Optimize each rule set and repeat the pruning process until
a single rule remains.

3. Evaluate the rule sets and pick the best one as the final solution.

The covering rule set is almost always an overly optimistic solution in
terms of performance. We try to find rules that completely separate the
classes. With a large dictionary, it may be easy to find very specialized
rules that take advantage of small differences in the training sample
of documents. These rules may not hold up in the future, but they will
allow for complete separation of the training documents. No document
in the positive class will be classified in the negative class because no
phrase found for the positive class will be found in the negative class.
Figure 3.12 describes a greedy algorithm for learning rules from the
sample. We simply keep adding words to a phrase until no errors are
made. The algorithm is greedy because once it makes a decision on the

3.4 Learning to Predict from Text 61

1. Grow conjunctive phrase T (until false positive errors are
zero) by greedily adding words that minimize error.

2. Record T as the next rule R. Remove documents covered
by T, and continue with step 1 until all documents are
covered.

Figure 3.12. Greedy Rule Induction for Obtaining a Covering Rule Set

next word, it does not revise that decision. No rules are induced for the
negative class. If none of the the rules apply to an unlabeled document,
its class is negative by default.
These covering rules may appear perfect on the training documents

because they separate the two classes. But a careful reading of the
words and phrases may show that some rules seem to be awkward,
almost overspecified. If the learning method cannot find short phrases
to cover lots of documents, the method will substitute longer phrases
that cover fewer documents. If the method keeps adding words, it will
eventually distinguish at least one document from the others. But
these rules will often be too specific, covering few cases and overfitting
the training collection of documents. The rules will not generalize to
new documents for correct predictions. Some of the words may be very
good, but less predictive specialized words are added just to get a rule
that excludes the negative class documents.
The decision rules are more than just predictors for new documents.

These are phrases that we can understand, and they should make
sense to the reader. Unlike a distance measure, the decision rules
should discriminate among the positive and negative documents and
should also be clear in their rationale. If we see a phrase that has
several reasonable words and then some apparently arbitrary words,
we may question the validity of the phrase.
Because these covering rules and phrases are overspecialized, they

will not necessarily be the best for prediction on new examples. It may
be better to use simpler phrases with fewer words. These simplified
phrases will not be as perfect as the full covering set of phrases; they
will make mistakes on the training samples. But more compact rules
may have more predictive words and could be more accurate for pre-
dictions on new documents. These simplified phrases can be readily
obtained by pruning the covering set of rules.
How do we determine how much we should simplify a covering set of

phrases or rules? Our rules may be phrases of words, but the process

62 3. Using Text for Prediction

1. Compute err/word for each single deletion operation (word
or phrase).

2. Select the operation with the minimum err/word.

3. If more words remain, go back to step 1. Otherwise,
the selected set of phrases is the one where err/word is
minimum over all cumulative deletion operations.

4. Store the selected set of phrases and repeat the whole
process by pruning that set, starting at step 1.

Figure 3.13. Pruning Decision Rules

is no different from that used in numerical applications of machine
learning. The phrases are decision rules, and a large set of rules can
be pruned to a smaller set of rules or phrases. Which one will predict
the best? This can be measured empirically without involving human
judgment. The original covering rule set will be our most verbose set of
words and phrases. Complete words or phrases will be deleted, result-
ing in a more compact set of rules, the most compact being deleting all
words and always choosing the larger class. This concept of pruning is
shared by many machine-learning programs. To prune in a controlled
manner, a series of smaller and smaller sets of phrases are found, and
their predictive performance is measured. The set of phrases with the
best predictive performance is selected.
Figure 3.13 is a procedure for pruning a set of phrases. Consider two

types of operations: delete a word or a complete phrase. For each oper-
ation, compute err/word, the number of increased errors per deleted
word. We can compute the local err/word for each single operation
and the global err/word for the cumulative set of deletion operations,
including the current one. For example, if we recursively deleted three
phrases, we can compute the increased number of errors per deleted
word after all three deletions.
This type of pruning is known as weakest-link pruning. It allows

us to match different size sets of rules and then pick one set by
some standard, usually minimum or near-minimum error. The method
prunes rule sets by a complexity measure. The measure that we use
is err/word, where we prune a rule set at the point where the number
of errors introduced per number of discarded components is minimum.
The procedure is repeated on the new, smaller rule set. The result of

3.4 Learning to Predict from Text 63

Table 3.1. Example of Rule Induction Error Summary

RSet Rules Words TrainErr TestErr TestSD AvgWords Err/Word
1 9 10 .0000 .1236 .0349 9.9 0.00
2* 6 7 .0337 .1011 .0320 7.0 1.00
3 5 5 .0787 .1236 .0349 5.0 2.00
4 4 4 .0899 .1236 .0349 4.0 4.00
5** 3 3 .1011 .1124 .0335 3.0 1.00
6 2 2 .1910 .1910 .0417 2.0 8.00
7 1 1 .3820 .3820 .0515 1.0 17.00

this process is a series of k rule sets, RS1...RSk, ordered by complexity
C1...Ck. Each one of these can be evaluated on independent test data,
and an error rate can be measured (we will discuss error estimation
in Section 3.5). An example of this process is illustrated in Table 3.1,
where we have seven rule sets. The covering rule set has nine rules or
phrases and ten words, and its error is estimated at .1236. Two rule
sets are of particular interest. The first of these is the rule set tagged
with a ‘*’. It is the minimum error (as measured by test cases) rule
set. A related rule set is the one tagged by ‘**’. This is the smallest
rule set with an error within 1 standard error of the minimum error.
Why is this second rule set (which we shall refer to as the 1 SE rule
set) interesting? Ideally, we should accept the rule set with the lowest
error (highest predictive power). However, in practice, our estimates
of error have an inherent variability. So the performance difference
between the minimum-error rule set and 1 SE rule set is not of much
significance. Moreover, in the real world, the population characteristics
from which our samples are drawn are subject to slight variations over
time. The 1 SE rule set, being generally of a lower complexity, performs
better in these circumstances. The situation is analogous to buying a
pair of shoes: rather than buying a pair of shoes that fit perfectly at the
moment of purchase, one is better off getting a pair with some slight
room for future changes.
The phrases are not mutually exclusive. More than one phrase can be

found in a document. Pruning the rules by deleting a word can increase
overlap, while deleting a phrase may create a hole where some positive
documents have no occurrences in any remaining phrases. These issues
require an optimization step to be invoked following the pruning of a
rule set. One form of optimization is swapping words, also known as
backfitting. For any word in our current phrases, we try to replace
it with any other word in the dictionary. If another word improves
performance, we swap them, moving the new word into the phrase and

64 3. Using Text for Prediction

for every word w in a set of phrases do
for every dictionary word dj do
Compute error of set of phrases with w replaced by dj

If this is lower than the original error, replace w by dj

endfor
endfor

Figure 3.14. Optimizing Decision Rules

the old word back into the dictionary. We continue the process until
no word can be replaced with another word that reduces errors. Fig-
ure 3.14 describes this optimization procedure. The procedure can be
implemented very efficiently using dynamic programming techniques.
The advantage of backfitting is that it fixes problems in the rule set
without changing its size.

3.4.3.1 How to Find the Best Decision Rules

Although decision rule induction is a relatively complex procedure,
the interpretability of the result is worth the effort. A solution in the
form of words and phrases is compatible with a search engine, and
the words can readily be highlighted in the documents. From a train-
ing perspective, the answer is intuitive and can be informative and
insightful. When compared with k-nearest-neighbor methods, it may
seem that one must pay the price in terms of extra learning time for
rule induction. However, to get answers of the same predictive quality
as rules, the k-nearest-neighbor methods may need to be tuned to the
right value of k—a process that is nontrivial and requires substantial
computational resources.
A data model that employs binary word values is effective and main-

tains the interpretability of the answers. An alternative is to use a
three-value count, 0, 1, 2, where 2 means two or more. The ternary
approach is close to binary but is somewhat more flexible in produc-
ing compact phrases. A tf-idf representation is incompatible with the
interpretive qualities of decision rule learning.
For a binary-valued word representation, all procedures described

earlier would try either a positive or negative value. Thus, a phrase
could be “word A and NOT word B.” The phrases can be restricted to
only positive words. This is less flexible than a true binary system, but
the rules are more intuitive since they only depend on the presence

3.4 Learning to Predict from Text 65

1. Initialize: i = 1; RS1 = covering rule set;

2. Find RSi with Ci components (Ci < Ci−1, i > 1) and save
it;

3. If RSi has more than 1 component, increment i and goto
step 2

4. Evaluate all RSi by estimating future error

5. Apply criteria to select best rule set:

(a) Find min test error
(b) Consider all simpler rule sets within one standard

error of min test error:
i. Pick the one with highest predictive value, or ask

an expert to pick the one that makes sense
ii. Consider only rule sets with predictive value

greater than a threshold

Figure 3.15. Rule Set Selection Procedure

of words, not their absence. For a ternary representation, > and <

operators are also used, so that an answer might be “NOT word A AND
occurrences of word B are > 1.”
Selecting the best rule set leaves some room for human preference.

Figure 3.15 describes a procedure for selecting the preferred phrases
by using the summary table that accompanies a solution proposed by
the learning system. In the absence of any specialized knowledge, we
like to always choose the most compact and reasonable set of phrases
(say, within one standard error of the minimum, as explained earlier).
There is also a possible tradeoff between the number of rules or phrases
and the overall size of the rule set (measured by the total number of
words). In some circumstances, one may want short phrases (but can
tolerate a large number of them); in other circumstances, one may want
fewer phrases (but can tolerate long ones). The summary table contains
information that allows such preferences to be taken into account in
making a selection.
The procedures that have been described for learning the predictive

words and phrases are special cases of decision rule induction. We have
been able to take advantage of the sparseness of the data. For numer-
ical induction, rule induction methods usually compare all instances

66 3. Using Text for Prediction

of a variable using greater than and less than operations. For text,
we know in advance that the values will either be binary or ternary.
Based on experience, we favor using local dictionaries of only a few hun-
dred words. The most frequent words are adequate, and the stopwords
should be removed. In many benchmarks for text categorization and
decision rules, the results of learning with much larger dictionaries do
not improve. Some additional speedups may be achieved in the pruning
steps. Instead of considering all words in a phrase for pruning, only the
last word in a phrase may be examined. The last word in a phrase is
typically the most specialized, and the preceding words are often more
predictive. The accompanying software includes an implementation of
these concepts.
So far, we have seen the similarity measures of the nearest-neighbor

methods that require the least effort in learning or assembling a sam-
ple, and we have seen decision rules that may take more time to learn
but may still be preferred because they are more intuitive and often
more accurate. Next, we look at the weighted-scoring methods that
have an edge in learning speed or predictive accuracy.

3.4.4 Scoring by Probabilities
The most obvious method of classification is direct lookup of the prob-
abilities of words in a document. Let C be the class label we are
interested in and x be a feature vector that denotes the presence or
absence of words from a dictionary. Mathematically, the objective is
to estimate Pr(C|x), the probability of a class, given the presence or
absence of words from a dictionary. For singly labeled document col-
lections, we can choose the category C that has the largest probability
score Pr(C|x). For multiply labeled document collections, if our interest
is to maximize the accuracy, then C is selected whenever Pr(C|x) is
greater than 0.5. Another way to look at the multiply labeled case is
that for each label we divide the document collection into two classes:
one class with label C and the other class with a label that is not C.
Therefore, we have a binary classification problem for each label value
C. This is reasonable because the multiple labels assigned to docu-
ments are usually independent of each other, and hence it is possible to
view each label assignment as a separate classification problem with
two classes (labeled and not labeled). It thus suffices to consider the
binary class problem.
However, we know that, even for this problem, a complete compu-

tation of probability is impossible. Even a 100 word dictionary has

3.4 Learning to Predict from Text 67

2100 possible combinations. Still, a simplified approach to probability
estimation, called Bayes with independence or naive Bayes, has often
been attempted. The mathematics is straightforward and the compu-
tation is efficient, which leads to wide application of this approach,
especially in applications where a quick implementation takes priority
over accuracy.

Pr(C|x) = Pr(x|C) ∗ Pr(C)/Pr(x). (3.2)

Bayes’ rule is given in Equation (3.2), where C is the class of interest
and x is a vector of ones and zeros corresponding to the presence or
absence of dictionary words for a specific document.
Note that when applying Equation (3.2) for two or more classes,

the common factor of 1/Pr(x) does not change the relative ranking
of Pr(C|x). Therefore, it does not need to be computed explicitly for
ranking purposes. If it is dropped from the comparisons, one does not
have an explicit probability estimate, only the numerator. However,
it might be useful to compute Pr(x) since it allows one to compute a
probability estimate. Using probability estimates, one can adjust the
kinds of errors made and also specify a reject probability threshold that
must be exceeded to classify. When there are two classes, C1 and C2,
Pr(x) is readily computed as in Equation (3.3).

Pr(x) = Pr(x|C1)Pr(C1) + Pr(x|C2)Pr(C2). (3.3)

The key to using these equations is to compute Pr(x|C). If we assume
that the words are independent then instead of looking up the prob-
ability of the complete vector of x, we can look up the probability of
the presence or absence of each word, Pr(xj|C), and multiply them all
together. We use xj to denote the j-th component of x. Equation (3.4)
states this mathematically.

Pr(x|C) =
∏
j

Pr(xj|C), Pr(x) =
∑
C

Pr(C)
∏
j

Pr(xj|C). (3.4)

The conditional probabilities in Equation (3.4) are readily estimated if
one uses the simple binary presence or absence of a word as a feature
value that would give only two possible values for each feature.
The probability estimates are easy to obtain from our spreadsheet.

Pr(C) is determined from the frequency of ones in the last column
divided by n, the number of examples, freq(C)/n. Each xj is either a 1
or a 0 (presence or absence of the word wj). The quantity Pr(xj = 1|C) is
computed from the frequency of ones for xj, where only the examples la-

68 3. Using Text for Prediction

w1 w2 w3 w4 Class
1 0 0 1 1
0 0 0 1 0
1 1 0 1 0 Class=1 Class=0
1 0 1 1 1 Pr(Class) 0.40 0.60
0 1 1 0 0 Pr(w1|Class) 0.75 0.50
1 0 0 0 0 Pr(w2|Class) 0.25 0.67
1 0 1 0 1 Pr(w3|Class) 0.50 0.33
0 1 0 0 1 Pr(w4|Class) 0.50 0.50
0 1 0 1 0
1 1 1 0 0

Figure 3.16. Scoring by Probabilities

beled C are considered, freq(xj = 1, label = C)/freq(C). The probability
of wj not occurring in C, Pr(xj = 0|C), is 1− Pr(xj = 1|C).

Figure 3.16 is an example for a dictionary of four words. The training
sample consists of ten documents of which four are labeled as Class = 1
and the remaining six as Class = 0. We can easily compute estimates
of the various conditional probabilities as shown in the figure. Now
suppose we get a new document D that has w2, w3, and w4. Then, for
the positive class, we could compute D’s probability as

Pr(Class = 1|D) = ((1− .75) ∗ .25 ∗ .5 ∗ .5) ∗ .4/Pr(D) = .00625/Pr(D).

For the negative class, the probability would be computed as

Pr(Class = 0|D) = ((1− .5) ∗ .67 ∗ .33 ∗ .5) ∗ .6/Pr(D) = .03333/Pr(D),

and as a result the document D would be labeled as Class = 0 (if one
computes Pr(D), one gets a probability of 0.84 for the classification).

The performance on text benchmark applications for naive Bayes is
usually weaker than for the other methods described in this chapter.
Still, it requires almost no memory and little computation, so it does
have its advocates. It usually works best with a relatively small dic-
tionary representing the key words needed to make a decision for that
class. An implementation is provided in the accompanying software.
The naive Bayes method of estimating probabilities looks complex,

but in fact it has a linear structure. This can be seen by noting that,
given a binary feature vector x, the probability score of class C is

Pr(C|x) =
Pr(C)

∏
j Pr(xj = 0|C)
Pr(x)

∏
j

(
Pr(xj = 1|C)
Pr(xj = 0|C)

)xj
,

3.4 Learning to Predict from Text 69

which can be rewritten as

Pr(C|x) =
1

Pr(x)
exp

⎛
⎝∑

j

wjxj + b

⎞
⎠ , (3.5)

where

wj = ln
Pr(xj = 1|C)
Pr(xj = 0|C)

, b = lnPr(C) +
∑
j

lnPr(xj = 0|C). (3.6)

This formulation, often called the multivariate Bernoulli model, al-
lows the formulation of another naive Bayes model, referred to as the
multinomial model, by replacing the linear weights formula in Equa-
tion (3.6) with the one in Equation (3.7). Here n is the number of
examples and m is the number of features.

wj = ln
λ + freq(xj = 1, label = C)

λm +
∑m

j′=1 freq(xj′ = 1, label = C)
, b = ln

freq(label = C)
n

.

(3.7)
The multinomial model is frequently used in text categorization ap-
plications. It normalizes the length of a document, which often leads
to slightly better performance. The parameter λ > 0 is a smoothing
parameter, often set to 1 in the literature. However, we find that a
smaller value such as 0.01 can sometimes be more effective.
In these forms, it is easier to see that one might also use other

methods to directly train the linear weights. We will examine linear
scoring methods in the next section.

3.4.5 Linear Scoring Methods
In order to achieve good prediction performance, it is often necessary
to create a feature vector of very high dimension. Although many of
the features are not useful, it can be difficult for a human to tell what
feature is useful and what feature is not. Therefore, the prediction
algorithm should have the ability to take a large set of features and
then select only useful features from the full set. A very useful method
to achieve this is by using linear scoring.
The naive Bayes method described above can be regarded as a spe-

cial case of the linear scoring method. This can be seen clearly from
Equation (3.5). However, the performance can be significantly improved
using more sophisticated training methods to obtain the weight vector
w = [wj] and bias b.

Consider the problem of distinguishing between two classes. The
general scoring method is to assign a positive score to predict the posi-

70 3. Using Text for Prediction

Linear Model
Word Weight

dividend 0.8741
earnings 0.4988
eight −0.0866

extraordinary −0.0267 New Document
months −0.1801 Words Score
payout 0.6141 dividend, payout, rose 1.4629
rose −0.0253
split 0.9050
york −0.1908
.

Figure 3.17. Computing the Weighted Score of a Document

tive class and a negative score to predict the negative class. Figure 3.17
illustrates an example of using a set of weights to determine the score
for a document. For all words that occur in a document, we find their
corresponding weights. These weights are then summed to determine
the document’s score.
Mathematically, this method is a linear scoring function. The general

form is in Equation (3.8), where D is the document and wj is the weight
for the j-th word in the dictionary, b is a constant, and xj is a one or zero,
depending on the j-th word’s presence or absence in the document.

Score(D) =
∑
j

wjxj + b = w · x + b. (3.8)

Linear scoring methods are classical approaches to solving a pre-
diction problem. The weaknesses of this method are well-known.
Geometrically, the method can be described as producing a line or
hyperplane. Although a line cannot fit complex surfaces, and a curvy
shape might be needed, it is often possible to create appropriate non-
linear features so that a curve in the original space lies in a hyperplane
in the enlarged space with the additional nonlinear features. In this
way, nonlinearity can be explicitly captured by constructing sophisti-
cated nonlinear features. An advantage of this approach is that the
modeling aspect becomes conceptually very simple since we can focus
on creating useful features and let the learning algorithm determine
how to assign a weight to each feature we create. Another advantage
is that the linear scoring method can efficiently handle sparse data.
This is important for text-mining applications since although feature
vectors can have high dimensionality, they are usually very sparse.
We know from various benchmarks that the linear scoring approach

does surprisingly well on text classification, to the point where it ri-

3.4 Learning to Predict from Text 71

vals the best results on benchmark data. Text lends itself to a scoring
approach such as the one we described in Figure 3.17.
The modern approach to learning the weights is not the same as

the classical statistical methods. The simple naive Bayes methods have
severe problems with redundant attributes, which in text corresponds
to words that behave like synonyms. Classical methods were developed
to handle a small number of attributes, certainly not the tens of thou-
sands of words in a global dictionary. The newer linear methods are
oblivious to these limitations. A major advance in linear methods for
text has been their ability to work with huge dictionaries and find
weights for every word in a complete dictionary. If there are ten syn-
onyms, it can weigh each one. This capability to work with so many
words and weigh all of them both positively and negatively seems to
capture the subtleties of language, where some words are precise and
strong predictors and others are vague and weak predictors.
Surely, isn’t the computational time for learning in this high-

dimensional space prohibitive? Not at all. The same problem that
cannot be solved by a classical method can now be solved incredibly
quickly, much faster than by nearest-neighbors similarity methods or
the decision rules. Moreover, the natural extension for the linear model
is not to find more complex mathematical functions. Instead, scoring
might be extended by adding word phrases to the single-word dictio-
naries. Benchmarks using more complex scoring methods generally
perform no better than the linear scores.
The key problem with these weighted-scoring methods is that of

learning the weights, the second column in Figure 3.17. The words are
those in the dictionary, and the weights for them will be learned from
a collection of documents. The label is assigned by applying Equation
(3.8). How do we learn the weights? Implementations can consist of less
than 200 lines of code. However, the method is a mathematical process,
an application of numerical analysis.

3.4.5.1 How to Find the Best Scoring Model

So how do we learn the weights? To determine the most efficient way,
the treatment is necessarily mathematical. It may look complex, but
the implementation in software is straightforward. The representation
of the words can be binary, but the tf-idf transformation usually yields
better results.
Let us first look at the mathematics behind the procedure. We con-

sider a two-class prediction problem to be one that determines a label

72 3. Using Text for Prediction

y ∈ {−1,1} from an associated vector x of input variables. Given a con-
tinuous model p(x), we consider the following prediction rule: predict
y = 1 if p(x) ≥ 0, and predict y = −1 otherwise. The classification error
(we ignore the point p(x) = 0, which is assumed to occur rarely) is

I(p(x), y) =
{

1 if p(x)y ≤ 0,

0 if p(x)y > 0.

A useful method for solving this problem is by linear predictors. These
consist of linear combinations of the input variables p(x) = w · x + b,
where w is often referred to as weight and b as bias. We call (w,b) the
weight vector and use the term bias for statistical bias.
Let (xi, yi) be the i-th row of the spreadsheet, where xi is the vector

representation of the i-th training data, and yi represent the label,
which takes the value 1 if the document belongs to category C and
value −1 otherwise. Note that, for notation simplicity, we have slightly
changed the representation in our spreadsheet model (using −1 in-
stead of 0 to represent the label of negative data). A very natural way to
compute a linear classifier is by finding a weight (ŵ, b̂) that minimizes
the average classification error in the training set:

(ŵ, b̂) = argmin
w,b

1
n

n∑
i=1

I(w · xi + b, yi).

Unfortunately, this problem is typically very hard (to be mathemat-
ically precise, it is NP-hard). It is thus desirable to replace the
classification error loss I(p, y) with another formulation that is com-
putationally more desirable. One modification is to minimize an upper
bound of the classification error as

min
w,b

1
n

n∑
i=1

g(w · xi + b, yi),

where

g(p, y) =
{

1− py if py ≤ 1,

0 if py > 1.

This loss function is often referred to as hinge loss. The resulting op-
timization problem is described as convex and thus computationally
tractable. This modification has been popular with many practitioners.
However, we consider a different method that minimizes the following
loss function:

h(p, y) =

⎧⎨
⎩
−2py py < −1
1
2 (py− 1)2 py ∈ [−1,1]
0 py > 1.

3.4 Learning to Predict from Text 73

This loss function has its root in the robust regression literature, and
we call it robust classification loss. Our linear weights are computed by
minimizing the following average loss on the training data:

(ŵ, b̂) = argmin
w,b

1
n

n∑
i=1

h(w · xi + b, yi). (3.9)

The main advantage of using Equations (3.9), (3.10), or (3.11), is that
it is possible to show that one computes a weight (ŵ, b̂) so that the
conditional in-class probability Pr(y = 1|x) can be estimated as q̂(x) =
max(0,min(1, (ŵ · x + b̂ + 1)/2)). The quantity q̂(x) can be interpreted
as an estimate of the statistical confidence of the classifier’s prediction,
which is useful to know in many problems.
A problem of using Equation (3.9) is that its solution may not be

unique. Such a formulation is often called numerically ill-posed. It
is difficult to design good numerical algorithms for solving ill-posed
problems since a small perturbation of the formulation can cause a
large instability in the solution. In general, Equation (3.9) may be
ill-posed and numerically unstable when the dimension of x is larger
than the number of training examples n, which frequently happens in
text-mining applications. A closely related statistical problem is that
using Equation (3.9) directly to compute a linear classifier can cause
overfitting. A common remedy to the problems above is to restrict
the search space of linear classifiers. This method is often called reg-
ularization, which avoids overfitting. Regularization can be achieved
in many different ways. We consider searching over the weight space
defined as

‖w‖2 + b2 ≤ A

where ‖w‖2 = w · w =
∑

j w
2
j , and A is a parameter controlling the

size of the search space. This method is quite popular. The resulting
method of computing a linear weight can now be written as

(ŵ, b̂) = argmin
w,b

1
n

n∑
i=1

h(w · xi, yi), ‖w‖2 + b2 ≤ A. (3.10)

From the computational point of view, one can introduce a La-
grangian multiplier λ for the constraint w2 + b2 ≤ A and obtain the
following equivalent formulation:

(ŵ, b̂) = argmin
w,b

[
1
n

n∑
i=1

h(w · xi + b, yi) +
λ

2
(‖w‖2 + b2)

]
. (3.11)

74 3. Using Text for Prediction

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

x = py

classification error I(x)
hinge loss g(x)
robust loss h(x)

Figure 3.18. Plots of Some Loss Functions

This is the formulation used in our computation. Because it mini-
mizes the averaged robust classification loss function, we call it robust
risk minimization (RRM). The advantage of Equation (3.11) is that it
transforms a constrained optimization problem into an unconstrained
optimization problem, which is typically easier to handle numerically.
In this transformation, the regularization parameter A is replaced by
λ, which in general can be tuned using test data as described in Section
3.5. Other loss functions may be used as well. Figure 3.18 shows the
robust loss and hinge loss functions against the classification error
function.
In order to handle large data, it is necessary to use an algorithm

that can take advantage of the sparse structure in the word vector
representation of documents. Two types of algorithms can be proposed.
One works by going through each word in the dictionary and updating
the corresponding weight component; the other works by going through
each data point (i.e., each positive word in a document) and updating
the weight accordingly. The second approach is closely related to a class
of learning methods called online learning that is desirable for large

3.4 Learning to Predict from Text 75

problems. Since such an algorithm examines the data sequentially, it
does not even need to store all the training data in memory at the
same time. This allows the algorithm to handle a large amount of data
without potential memory issues.
For large problems such as document collections, we use the online-

style method to solve Equation (3.11). This involves a transformation
of Equation (3.11) into an equivalent dual formulation that depends
on a set of variables α = [αi], where each variable αi(i = 1, . . . ,n)
is associated with a data point (xi, yi). In particular, the solution of
Equation (3.11) has the dual representation

ŵ =
n∑

i=1

α̂ixiyi, b̂ =
n∑

i=1

α̂iyi

where α̂ is the solution to the following dual optimization problem:

α̂ = argmin
α

⎡
⎣ n∑

i=1

(
λn
2

α2
i − αi

)
+

1
2

∥∥∥∥∥
n∑

i=1

αixiyi

∥∥∥∥∥
2

+
1
2

(
n∑

i=1

αiyi

)2
⎤
⎦

s.t. ∀i : αiyi ∈
[
0,

2
λn

]
(3.12)

The equivalence follows from a general convex-duality formalism,
which is beyond the scope of this book. We use an alternating direc-
tion optimization method to solve Equation (3.12). The idea is to cycle
through all data points (xi, yi) i = 1, . . . ,n, where for each i we up-
date the corresponding dual variable αi so as to decrease the objective
value in Equation (3.12), while keeping the remaining dual variables αj

fixed (j
= i). Each step is thus a simple one-dimensional optimization
problem with respect to αi, which can be minimized exactly in our
case. However, instead of using the exact optimization at each step,
we employ a gradient descent rule, which is more generally applicable:

αi → αi − ηi[λnαi − yi − (w · xi + b)yi],

where w =
n∑

i=1

αixiyi, b =
n∑

i=1

αiyi. (3.13)

In the formula above, ηi is a small step-size quantity that is sometimes
referred to as the “learning rate” in the online learning literature.
In addition, since we have the constraint αi ∈ [0,2/λn] in Equation
(3.12), we choose ηi to ensure that the updated αi satisfies this con-
straint (which is also equivalent to a truncation of the updated αi onto
[0,2/λn]). The quantity [λnαi − yi − (w · xi + b)yi] is the gradient of

76 3. Using Text for Prediction

Input: training data (x1, y1), . . . , (xn, yn)
Parameters: K, c, η1, . . . , ηn

Output: weight vector wj (j = 1 . . .m), b
Initialize: αi = 0 (i = 1 . . .n); wj = 0 (j = 1 . . .m); b = 0
for k = 1 to K do

for i = 1 to n do
p = (w · xi + b)yi

di = max(min(2c− αi, ηi((c− αi)/c− p)),−αi)
w = w + dixiyi

b = b + diyi

αi = αi + di

endfor
endfor

Figure 3.19. Learning the Weights for the Linear Categorizer

the dual objective function of Equation (3.12) with respect to αi, and
thus the gradient descent update above modifies αi in the direction
that decreases the objective function. In our case, there is a closed-form
solution of ηi such that the update Equation (3.13) exactly minimizes
Equation (3.12) as a function of αi with αj (j
= i) fixed. However, choos-
ing a smaller step size ηi usually helps. Moreover, good performance
can be achieved by simply picking a small fixed step size ηi, where
ηi = 0.25 is a reasonable generic choice.
We have shown the mathematics behind the procedure for learning

weights to show the crucial reformulations that enable an efficient iter-
ative algorithm to be derived. The complete algorithm for learning the
weights is shown in Figure 3.19. A version of it has been implemented
and included in the accompanying software. The algorithm is scalable
and can efficiently handle very large problems.
In the algorithm above, c = 1/λn. The algorithm can be terminated

when a certain stopping criterion is met. For example, one criterion is
the so-called duality gap, which is frequently used in the optimization
literature. However, a simpler method of using a fixed number of it-
erations K generally works well. For simplicity, we often use a fixed
number K = 40. In our implementation, we also employ a random
data ordering of (xi, yi). This is to avoid the situation that data in the
same category (or similar data) are grouped together. In such a case,
an online type algorithm is likely to perform poorly since it will adjust
the weight vector to overfit one category before it sees other categories.

3.5 Evaluation of Performance 77

Notice that a smaller λ in Equation (3.11) corresponds to a larger A
in Equation (3.10). This means that with a smaller λ, a larger weight
space is searched, and thus the statistical bias is smaller in the sense
that we can approximate the target function more accurately. However,
with a large A, statistical variance is larger in the sense that one can
also approximate a noisy function more accurately, which causes over-
fitting of the training data. Conversely, a larger λ means searching a
smaller weight space and is less likely to overfit the training data; how-
ever, since the model space is smaller, we have a larger bias. It follows
that an appropriate choice of λ is necessary for optimal performance.
It has been suggested that the choice of λ = 10−3 is typically good for
many text data sets. In our implementation, we use this value as the
default. However, for some problems, other values (such as λ = 10−4)
are better. In particular, this is true for large data since it is less likely
to overfit. This means that one can search over a larger weight space
to reduce the bias. This improves the performance when the training
data size becomes large.

3.5 Evaluation of Performance

The learning methods provide potential solutions. They do not guar-
antee that these are good solutions. To get the best results, we must
ensure that (a) the wisest choices are made in applying the methods
and (b) estimates are found for the future performance of proposed
solutions. Let’s look at the immediate task of evaluating a solution and
estimating its future performance.

3.5.1 Estimating Current and Future Performance
The standard statistical model assumes that a sample is randomly
drawn from some general population as described in Figure 3.20. The
new examples are unlabeled, and their labels will be assigned. To eval-
uate the performance of a solution, we train on one sample and test
on another sample. Typically, our data might be randomly divided into
two parts: one for training and one for testing.
Are these new documents from the same population? Very often they

are not, but over relatively short time horizons, we assume that new
documents are similar to old documents or that events will unfold in a
similar way. Documents come with a time stamp. Almost all evaluation
of text-mining solutions orders a sample by time and uses the earlier

78 3. Using Text for Prediction

Population

Random Sample

C1

C1
C2

C7

C121

C9

C12

C117

C9
C117

Figure 3.20. Drawing a Random Sample from a Population

Time

Training Sample Test Sample

Figure 3.21. Partitioning Documents into Training and Test Sets

documents for training and the later documents for testing. This is
illustrated in Figure 3.21, where the sample is divided by time, not
randomly. This breakdown more closely simulates the prediction of
future events. Unlike the classical random sample for identically and
independently distributed data, some additional experimentation may
be necessary to identify the time periods that are best for training so
that they continue to hold over some fixed future time period.
Once the data are split into training and testing samples, learn-

ing takes place exclusively on the training set. Performance can be
estimated in terms of several measures. The standard measure for
classification is the error rate of Equation (3.14), and its standard error
is given in Equation (3.15). The error rate is binomially distributed
and is approximately normal. Two standard errors are often used to
approximate 95% confidence bounds.

Error rate(erate) =
number of errors

number of documents
, (3.14)

Standard Error(SE) =

√
erate ∗ (1− erate)

number of documents
. (3.15)

3.5 Evaluation of Performance 79

Although error-rates and associated standard errors are useful for
estimating the performance of predictors in general, for most text
applications, such as text categorization, a more detailed analysis of
the errors is desirable. For information retrieval applications, there
is usually a large number of negative data. A classifier can achieve
a very high accuracy (i.e., a very low error rate) by simply saying
that all data are negative. It is thus useful to measure the classifi-
cation performance by ignoring correctly predicted negative data and
then examining the sorts of errors made by the classifier. Three ratios
have achieved particular prominence: precision, recall, and F-measure.
Their definitions are given in Equations (3.16).

precision =
number of correct positive predictions

number of positive predictions
,

recall =
number of correct positive predictions
number of positive class documents

, (3.16)

F-measure =
2

1/precision + 1/recall
.

Precision, recall, and their combination in the F-measure are all more
interesting measures of the quality of binary decisions on documents.
The following example illustrates these measures of performance.

Let’s assume that there is a database of labeled documents. Let’s focus
on a particular label, such as sports. Now consider a classifier that
labels documents as sports or not, and let’s use it to retrieve all the doc-
uments that it labels. We can assess the performance of the classifier
from the set of retrieved documents by computing the three measures
as follows:

• The percentage of all sports documents that are retrieved is the
recall.

• The percentage of documents that it correctly labels as sports is
the precision.

• F-measure is defined as the harmonic mean of precision and re-
call. It is often used to measure the performance of a system when
a single number is preferred.

Because document collections are typically large, high precision is
often more valued. For high precision, the computer’s positive decisions
are usually correct, but it may fail to catch all positives (this is mea-
sured by recall). Thus, if a program identifies spam e-mail with high
precision and low recall, it may often leave spam in your Inbox (low

80 3. Using Text for Prediction

recall), but when it puts a spam document in the trash, it is usually
correct (high precision).
Is it possible to adjust the precision and recall of a classifier? Since

precision and recall measure different kinds of errors, if the overall
error rate remains the same, increasing the precision (reducing one
kind of error) lowers the recall (increases the other kind of error).
This leads to a precision–recall tradeoff. Most classifiers have a way
of making this tradeoff by a simple variation of a constant. For the
classifiers discussed in this chapter, the process is as follows:

• For k nearest-neighbor methods, the threshold can be varied from
a simple majority to some other value. For example, if five nearest
neighbors being used classify a document within a topic, instead
of requiring that three of the five nearest neighbors belong to
the topic, one may change this threshold to a different value. A
value less than 3 would boost recall, whereas values greater than
3 would boost precision.

• For decision rules, the cost of different kinds of errors can be
altered. For example, if false negative errors are made twice as
costly as false positive errors, then recall would be boosted.

• For probabilistic scoring, the threshold for a class can be altered
from 0.5 to some other value. Lower thresholds would boost recall,
while higher values would boost precision.

• For linear models, the threshold can be changed from zero to a
different value. Lower values would help recall, and higher values
would boost precision.

3.5.2 Getting the Most from a Learning Method
These measures tell us how well we might project into the future. Be-
cause the sample may change over time, we can expect somewhat worse
results in the future. Evaluation and estimation of future performance
is an important objective. The process that is used for documents al-
most always employs a distinct time-oriented train and test sample.
During training, we have another objective. We must set the param-
eters of our learning program to get the best solutions. Each of the
learning methods that we have described has a single parameter re-
lated to the complexity of the solution. This parameter can be adjusted
during training. For the k-nearest-neighbor methods that compute sim-
ilarity, the value of k must be determined. For the decision rules, the

3.6 Applications 81

total number of words in a rule set is typically used as the complexity
measure. For the linear model, a regularization parameter controls
complexity. How can these methods find the best value during training?
For this purpose, the classical approach is effective, where the training
data are randomly divided and some of the data are used to evaluate
the best value of the complexity parameter. For a very large sample,
as is typical in text mining, the risk is not great for tuning a single
complexity parameter directly on the test data. The estimate for future
performance is usually the basis for selecting the best setting of the
complexity parameter. If the same test data are used for selection and
estimation, then the estimate may be somewhat optimistic. The safest
procedure is to use two samples, one for tuning and one for estimation.

3.6 Applications

The prototypical predictive text-mining application has been text cat-
egorization. Newswires are automatically assigned topics such as
financial or sports stories. A more visible application has emerged in
the public consciousness: e-mail spam. In its simplest form, filtering
valid e-mail from spam is an instance of binary classification: spam or
not spam. Most e-mail programs allow a user to specify filters. It comes
as no surprise that the filters use user-defined decision rules. These are
immediately interpretable, and users are very comfortable specifying
their own rules composed of words in various heading fields or the body
of the message. Some specialized filtering programs at the system level
are partially precompiled linear scoring functions, such as noted in our
table of words and weights. They allow the administrator to adjust
the weights for phrases or other characteristics of e-mail such as the
number of spaces in the subject line. E-mail programs may also learn
directly from examples, where users mark the spam e-mail, separating
all e-mail in an Inbox into spam and not spam. Typically, a linear scor-
ing function is then learned to replace the user in marking incoming
e-mail. Obviously, it is more dangerous to move a good message into
the trash than not to detect some spam e-mail. Precision takes priority
over recall.
We will have more to say about applications of prediction in Chapter

7. Compared with mining of structured data, predictive text mining
is a new frontier. Because text mining involves the transformation of
unstructured information into structured information, we can expect
many applications that mix both numerical and text data.

82 3. Using Text for Prediction

3.7 Historical and Bibliographical
Remarks

The predictive methods discussed above have been used in many other
contexts. Our interest, however, is their use in text processing and text
mining.
The use of nearest-neighbor methods in document retrieval was

discussed in the first SIGIR conference [Eastman and Weiss, 1978],
where the document collection was organized as a tree. Another en-
tirely different example is described in [Masand et al., 1992], in which
the collection is stored in a highly parallel processor, the Connection
Machine. In this example, the documents are news stories that are to
be assigned classification codes for the Dow Jones news service. Rule-
based methods were applied to document classification in [Apté et al.,
1994] using inductive learning to find classification rules. A somewhat
different rule system for classifying e-mail, the Ripper algorithm, is
described in [Cohen, 1996]. Rule-based methods are actively explored
in [Maloof, 2003], which discusses learning concepts that change over
time.
Linear classification methods have become very popular, due both to

their simplicity and their good classification accuracy. The naive Bayes
method has been widely used in machine learning due to its simplicity.
One of the first applications of this method to text categorization was
described in [McCallum and Nigam, 1998], where the authors proposed
the two naive Bayes models we discussed in this chapter.
In addition to the standard naive Bayes algorithms, one can also use

a simpler linear classification method called the centroid method. The
linear weight vector for a category is simply the mean of document
vectors in the category. Statistically, it can be regarded as a naive
Bayes method under the assumption that each vector component is
generated according to a Gaussian distribution. Because the Gaussian
assumption is not very suitable for text data, this method is often
inferior to more standard naive Bayes models. However, it can still be
useful for special purposes. Since the method is widely used in text
clustering, we discuss it in Section 5.2.1.1.
Another classical linear classification method is logistic regression,

which is closely related to the maximum entropy (MaxEnt) method. We
delay the description of MaxEnt to Chapter 6 since it is one of the main
learning methods used in natural language processing and information
extraction.

3.7 Historical and Bibliographical Remarks 83

The current popularity of linear classification is mostly due to the
development of large-margin classification, generally regarded as a
very significant advance of machine-learning methodology. This class
of methods includes many state-of-the-art learning algorithms such
as boosting and support vector machines (SVM). Generally speaking,
a large-margin algorithm finds a classifier that minimizes a certain
convex upper bound of the classification error loss.
The idea of boosting can be used to produce a strong learner by

combining weaker learners obtained on reweighted samples of the
training data [Freund and Schapire, 1997]. One can also view boosting
as greedily minimizing a convex loss of the combined weak learners
[Breiman, 1999, Schapire and Singer, 1999, Friedman et al., 2000,
Hastie et al., 2001]. The method has been applied to text categorization
with great results. In particular, a version of boosted multiple decision
trees was used in [Weiss et al., 1999] to produce one of the best reported
text categorization performances on the standard Reuters data.
Another very popular large-margin method related to boosting is

SVM, proposed by Vapnik and based on some theoretical and algorith-
mic considerations [Vapnik, 1998]. This method has also been applied
to text categorization with very good performance [Joachims, 1998].
SVM is a specific case of a family of algorithms that we refer to as
regularized linear classification methods. It also includes the robust
risk minimization method (Equation (3.11)) described in this chapter.
In general, a regularized linear classification method picks a convex
loss function (the h-term in Equation (3.11)) to minimize and includes a
regularization term (the ‖w‖2 +b2 term in Equation (3.11)) to stabilize
the solution. Compared with SVM, the advantage of Equation (3.11)
is that one can obtain probability information from its linear scoring
output. In principle, this is not possible with SVM. We refer readers
to [Zhang, 2004] for a study on some theoretical properties of different
loss functions.
The duality formalism leading to the linear scoring algorithm in this

chapter can be found in [Zhang, 2002]. The algorithm that we pre-
sented here first appeared in [Damerau et al., 2004]. Although we only
described one particular loss function and one particular regulariza-
tion condition, other versions of regularized linear classifiers can also
perform well for text categorization [Zhang and Oles, 2001]. Moreover,
a recent study [Li and Yang, 2003] argued that a number of existing
methods such as Rocchio, naive Bayes, and k-NN, can also be studied
in this framework.

84 3. Using Text for Prediction

Although we present application case studies later in Chapter 7, we
briefly mention two applications here, focusing on their use of predic-
tive methods. [Tan et al., 2000] discusses mining of call center records
in an attempt to predict the cost of servicing a call. They explored an
inductive learner (decision trees) and naive Bayes as classifiers. [Weiss
et al., 2000b] also discusses mining call center records, in this case
to reduce a very large number of call center problem records to many
fewer model cases.
A large number of developers are now working on filtering e-mail

spam, and a number of companies sell products to filter spam from
an e-mail stream. A conference on spam was held in Cambridge in
January 2003. [Graham, 2003] discusses the use of Bayesian methods.
Many other conferences on language processing have had papers on
filtering spam, such as [Kolcz and Alspector, 2001], which discusses
filtering using an SVM.

4

Information Retrieval and
Text Mining

4.1 Is Information Retrieval a Form of Text
Mining?

What is the principal computer specialty for processing documents
and text? Many experts would respond “Information Retrieval.” The
task of information retrieval, or IR as its practitioners call it, is to
retrieve relevant documents in response to a query. Figure 4.1 illus-
trates the objectives of information retrieval of documents, where (a) a
general description is given of the query, (b) the document collection is
searched, and (c) a subset of relevant documents are returned.
These seem like objectives far afield from predictive text mining. For

prediction, the objectives are to (a) examine a collection of documents,
(b) learn decision criteria for classification, and (c) apply these criteria
to new documents. The goals of predictive text mining are illustrated in
Figure 4.2. These goals do not appear to match the goals of information
retrieval.
The fundamental technique of information retrieval is measuring

similarity. A query is examined and transformed into a vector of val-

Figure 4.1. Key Steps in Information Retrieval

86 4. Information Retrieval and Text Mining

Figure 4.2. Key Steps in Predictive Text Mining

Figure 4.3. Predicting from Retrieved Documents

ues to be compared with the measurements taken over the stored
documents. In Chapter 3, we described prediction methods that use
similarity measures for making decisions. The prediction problem is
not solved directly by finding patterns in the collection of documents.
Rather, similar documents are retrieved. We then look at these re-
trieved documents and only then measure their properties. Because
we are interested in classification, we count the number of their class
labels to see which label should be assigned to a new, unlabeled
document.
We can now see that our objectives can be posed in the form of

an information retrieval model, where documents are retrieved that
are relevant to a query. Our query will be a new document. Like all
documents, the query will be posed in terms of a word vector model.
The query will be matched to all the stored documents, and a subset of
documents will be retrieved. To make predictions, we add another step,
as illustrated in Figure 4.3. We must examine the properties of the
retrieved documents, typically by simple criteria such as their labels.
In Chapter 3, we presented the nearest-neighbor methods, which

are the embodiment of similarity-based prediction. We intention-
ally left out the details of measuring similarity and the potentially
time-consuming search for similar documents. Because information
retrieval has been studied as a separate endeavor, it would be wise to
examine these “details” from both the IR perspective and the prediction
perspective. This will allow us to make the best choices in applying
a prediction method that measures document similarity. Although we
have posed the prediction problem as a variant of information retrieval,
there are differences and similarities among the full range of infor-

4.2 Key Word Search 87

mation retrieval techniques. We want to be aware of this relationship
between information retrieval and prediction.

4.2 Key Word Search

Our technical goal for prediction is to classify new, unseen documents.
We have made the case that information retrieval and prediction are
unified by the computation of similarity of documents. Our most usual
encounter with information retrieval is through a search engine, and
our queries hardly match this paradigm of comparing documents by
similarity. Yet, we should recognize that using a search engine is a
special instance of the same general concept.
To invoke a search engine, we enter key words and expect relevant

documents to be returned. These key words are words in a dictionary
created from the document collection. In computing similarity among
documents, almost all predictive techniques will use only the positive
occurrences of words. While few, the words posed by the user of a search
engine are the positive words of interest, so similarity can readily be
computed.
The key words posed by a query to a search engine can be viewed as

a small document. Therefore, it’s just the usual document comparison,
measuring how similar the new document (i.e., the query) is to the
documents in the collection. Because the document is so small, our
general expectations for comparing the similarity of documents are
different from those for arbitrarily sized documents. Unless we have
a very small collection of documents or uncommon key words are posed
to the search engine, it is likely that an exact match of documents to
the key words will be found. The notion of similarity is reduced to
finding documents with the same key words as posed to the search
engine. This creates special problems for a search engine because its
ultimate objective is to rank the documents, not to assign a label. Thus,
it may need additional techniques to break the expected ties, where all
retrieved documents match the search criteria.
In the general prediction problem, the same techniques can be used

to compute similarity. There, however, the number of words contained
in the new document is expected to be much greater, and few if any
exact matches will be found. Given just 100 words in a document,
then 2100 possibilities might be hypothesized. Unless they are dupli-
cates of highly related documents, they are likely to differ greatly.
When comparing documents, we will not see exact matches but instead

88 4. Information Retrieval and Text Mining

documents that are measured as being similar by having the highest
scores.

4.3 Nearest-Neighbor Methods

From the perspective of statistical prediction theory, a method that
compares vectors and measures similarity is a nearest-neighbor
method. The heart of a nearest-neighbor method is its computation
of distance between two examples, or in our case similarity. Because
of the unique way of computing similarity and its specialized applica-
tion to search engines, it is easy to see why the techniques are less
attributed to classical prediction methods than to modern information
retrieval theory.
The generalized methods are essentially the same for both prediction

and information retrieval. However, their applications do diverge. For
nearest-neighbor methods and prediction, the methods will collect the
k most similar documents and then look at their labels. The actual
documents are typically not of great interest and are not displayed in
reaching a conclusion. The best value of k is usually determined by
empirical experimentation. Although we may be tempted to accept the
single most similar document, k=1, there are strong theoretical rea-
sons why this may lead to weaker results than using a larger number,
especially when the sample is large.
For information retrieval, where classification is not the goal, the

actual documents retrieved are of critical interest. They will determine
whether a satisfactory response to the search query has been found.
Moreover, we expect the best answers to be found near the top of the
list of documents, where the similarity score is the highest, and it is
more likely that an answer is relevant. Most users lose patience after
reviewing the top ten answers, such as a summary of potential answers
and their links found by a search engine. Most users will not go through
tens of document links to search for an acceptable link. They instead
change the query, thereby submitting a new document to compare to
the collection.
The dimensions of the data will likely diverge. The document col-

lection for a search engine is often much greater than needed for a
binary classification problem, yet the number of words to be considered
in computing similarity is far smaller. The query is a small document
consisting of few words, and only these words are used in the computa-
tion of similarity. These are the positive words. For a typical prediction

4.4 Measuring Similarity 89

problem, the comparison is of a complete document, where thousands
of words can be positive.
Still, these methods are conceptually the same. They all compute

similarity measures. Let’s look at how documents are compared.

4.4 Measuring Similarity

Many measures of similarity could be specified. We will consider three
increasingly complex measures. These are intuitively clear and are a
natural progression from simple to complex along the same theme.
Although these measures are not shown to be always best, they have
demonstrated their value through many applications. Given two doc-
uments, we will examine how similar they are. The result of these
efforts is a numerical measure of similarity. In general, we compare
one document to a collection of documents. Therefore, we have a list
or vector of similarity measures, one for each document. If we are
interested in just the highest k measured documents, then we might
just keep a running list of k documents and their similar measures.
Let’s see how to compute similarity between documents.

4.4.1 Shared Word Count
The most obvious measure of similarity between documents is a count
of their shared words. Which words are we talking about? For an infor-
mation retrieval system, we likely have a global dictionary, where all
potential words will be included in the dictionary, with the exception
of stopwords. For prediction, it is generally better to preselect the dic-
tionary relative to the label. We typically think of computing similarity
independently of the labels and only afterwards examining the labels of
the retrieved documents. Yet, the labels can be valuable in composing
a local dictionary, such as the topic of some newswires.
Figure 3.10 from Chapter 3 is an illustration of the process of com-

puting similarity by shared words. We look at all the words in the new
document and for each document in the collection count how many of
these words also appear. No weightings are used, just a simple count. If
the initial dictionary has true key words, with weakly predictive words
removed, then this count will produce reasonably predictive results.
The great value of this measure is that the results are clearly intuitive.
No one will question why a document was retrieved or how the measure
was computed.

90 4. Information Retrieval and Text Mining

The vectors for each document can be described in terms of zeros and
ones. Mathematically, the similarity of two documents is the product
of the two vectors because only when two ones are multiplied is a word
counted. In terms of implementation, one can readily match ones by
AND-ed bit manipulation operations. Any way you look at it, comput-
ing shared words is easy. The quality can be good for a well-composed
dictionary, but performance can degrade with larger dictionaries con-
taining nonspecific words. We next look at a minor modification that
sometimes substantially increases predictive performance.

4.4.2 Word Count and Bonus
In high dimensions, it’s difficult for a nearest-neighbor method to
readily discriminate between predictive and weakly predictive words.
Although we may give the method some help by carefully selecting
the dictionary words in advance, it is advantageous to use more than
the presence of words in the similarity measure. Instead of computing
similarity based on binary features, we might compute similarity as
suggested in Equations (4.1) and (4.2) for computing the similarity
between a new document that contains K words and document D(i).

Similarity(D(i)) =
K∑

j=1

w(j), (4.1)

w(j) =

{
1 + 1/df(j) if word(j) occurs in both documents,
0 otherwise.

(4.2)

We compute a measure of similarity between two documents for all
dictionary words occurring in both documents. As before, a value of
1 is added to the similarity measure when a word is positive in both
documents. A bonus is also added to the measure. The bonus is 1/df(j),
where df(j) is the number of documents in which the word j occurs in
the collection, a variant of idf, the inverse document frequency. Thus,
if the word occurs in many documents, the bonus is small. If the word
occurs in few documents, the bonus is relatively large. Instead of a 0 or
1 contribution for each word, we now have a 0 to 2 contribution, where
the bonus also varies between 0 and 1. Figure 4.4 is an example of this
similarity computation.
We have used this simple measure in at least one significant pre-

dictive text-mining application. It does significantly better than the
simple shared word count. It does help discriminate among the weak

4.4 Measuring Similarity 91

New
Document

Measure
Similarity

With Bonus

Similarity
Scores

Labeled
Spreadsheet

Vector

1

0

1

1

1

1

1
1

1
1

1
1

1

11

1

1

1
0

0 0 0
0 0 0 0

0 0 0
0 0

0

0
0 0 0

0

0 0

2.83
1.33
0
1.33
1.5
1.33
2.67

Figure 4.4. Computing Similarity Scores with Bonus

and strong predictive words, yet maintains an intuitive feel. On that
same benchmark, the widely used cosine distance did better by a couple
of percentage points. We look at cosine distance next.

4.4.3 Cosine Similarity
The classical information retrieval approach to comparing documents
is cosine similarity. The word count and bonus approach is a variation
of computing tf-idf. Because the term frequency was just measured
as true or false, the word count and bonus described in the previ-
ous section are already normalized and scaled reasonably. For cosine
similarity, only positive words shared by the compared documents are
considered, but frequency of word occurrence is also valued. Putting
these themes together, we have the widely applied cosine distance of
Equations (4.3). The weight of a word in a document w(j) is computed
by the tf-idf formulation, where j is the j-th word in the dictionary, tf(j),
is its frequency in the document, N is the number of documents in the
(training) collection, and df(j) is the number of documents in which the
word appears. As discussed in Chapter 2, tf-idf is an extension of a sim-
ple binary encoding of word presence, and extra weighting is given to
high-frequency words and words that are relatively unique. The tf-idf
measure can also be considered a measure of importance or relevance
to the document. Because documents are of variable length, frequency
information could be misleading. The tf-idf measure can be normalized
to a unit length of a document D as described by norm(D) in Equation
(4.3). The value of norm(D) is a constant; it can be computed and stored
in advance for each document. Note that w(j) is always zero when a

92 4. Information Retrieval and Text Mining

word does not appear in a document, so that only shared words between
two compared documents are of interest. The cosine distance multiplies
the weights of the shared words of the two compared documents, which
is similar to a logical AND operation requiring a word to be present in
both documents. The measures of individual words are summed over
all words according to Equation (4.3), resulting in a measure of overall
similarity between two documents.

w(j) = tf(j) ∗ log2(N/df(j)),

norm(D) =
√∑

w(j)2, (4.3)

cosine(d1,d2) =
∑

(wd1(j) ∗wd2(j))/(norm(d1) ∗ norm(d2)).

The multiplications to compute similarity ensure that only positive
words in both documents will be addressed. This also leads to efficient
computation with inverted lists, which will be described in Section 4.7.
By including frequency information and normalizing the computation,
the similarity measures may be less than fully intuitive and wander
over a wide range, but the results have proven their worth over time.
Cosine is the default computation for information retrieval and should
serve as a benchmark for improvement in any application. Nearest-
neighbor methods for prediction do not assume any fixed method of
computing distance or similarity, and results may be improved by
trying alternatives and subjecting them to rigorous evaluation.

4.5 Web-Based Document Search

These measures for computing similarity are quite satisfactory for
classical information retrieval. For searching the Web, which is our
most common encounter with their application, they are only partially
fulfilling in finding the most relevant documents.
In comparing prediction and information retrieval, we have de-

scribed several differences in the applicability of similarity measures.
For prediction, we expect the query to be a document with many words.
For information retrieval, the query is typically a few key words. Does
this make a difference? For prediction, the goal is to classify, to find
the correct label. If the key words are good, even if they match many
documents, the process can be successful because we only need to count
the labels of the retrieved documents. For information retrieval, our
objective is to order and examine the retrieved documents. The Web is
composed of a massive number of documents. Unless the key words are

4.5 Web-Based Document Search 93

unique, a very large number of documents may be retrieved having
all key words. Because the similarity scores are likely to be nearly
identical, there is no way to order the retrieved documents based on
these similarity measures.
Until search engines like Google arrived, it was not unusual for a

search engine to present thousands of potential answers to a query,
but the ordering of these retrieved documents was most unappealing.
It would be the responsibility of a user to refocus the query by adding
more words or by substituting alternative, more specific words. Al-
though the document space of the Web is massive, these documents
contain more information than just words. Web documents are linked
to other documents, and this information can be exploited to rank
the documents retrieved in response to a query. An effective ranking
of documents will improve predictive performance, providing a more
accurate group for the k-nearest neighbors.
Formally, a page-ranking function assigns a score to each Web page

based on the query. The larger the score, the more relevant the page is
to the query. Mathematically, the page-ranking problem can be posed
as a prediction problem. For example, given a query, we may predict
the degree (or the probability) of each Web page’s relevance to the
query. Therefore, given enough training data, one may in principle
use machine-learning methods to learn a page-ranking function. An
important issue in Web searching is the difference between query-
independent ranking and query-dependent ranking of Web pages.
Ideally, the ranking score of a Web page is the relevancy of the Web
page to the query, and thus should be query-dependent. However, some
algorithms assign a score to each Web page independently of the query.
In this case, the score can be interpreted as an indication of the page’s
quality. After a search engine retrieves a large number of potential
answers, the highest-quality pages can then be presented first, followed
by the lower-quality pages.
Information about links will help in ranking, which is needed to

select the best k documents within a larger set of retrieved documents.
How then can we rank effectively when only a few key words are in a
query?

4.5.1 Link Analysis
For a simple query using any of our distance measures, we will get lots
of ties whether we use the direct match of the query words or a more
sophisticated cosine distance. Unless the words are unique, all distance

94 4. Information Retrieval and Text Mining

measures will return large numbers of responses. One of the insights
of modern search engines such as Google has been to use additional
information about citations to rank these tied responses.
To solve this problem, we hold an election, where each document

in the collection votes for its favorite documents. For the Web, the
documents are Web pages. This concept of voting is not that unusual.
Scientific papers cite other papers that they deem relevant. The impor-
tance of a collection of papers can be ranked objectively by looking at
these papers and measuring how often a paper is cited by other papers,
most significantly by other highly ranked papers. Similarly, Web pages
have links to other Web pages, and a similar citation analysis can rank
the Web pages by importance. The overall concept is simple. When a
large group of Web pages are retrieved, ordering is needed. Most people
will examine a small number of documents before dismissing the list as
unsatisfactory. The documents that should be ranked highly are those
that are voted most relevant by other documents. These are the most
likely to satisfy the user who has posed a somewhat nonspecific query.
How are these rankings computed? Let’s look at the PageRank al-

gorithm of the Google search engine. The computation is surprisingly
simple even over a huge number of pages. A numerical measure or
rank will be assigned to each page on the Web, corresponding to a
linked document. Let A be a page and Tj be a page pointing to A.
The page rank of page A, PR(A), is given in Equation (4.4), where d
is a minimum value assigned to any page and C(T) is the number of
outgoing links from page T. Thus we see that the rank of any page is
dependent on the number of links pointing to it and their ranks. It’s
a recursive definition. A page will be ranked highly when many highly
ranked pages point to it. To compute the ranks, the trivial iterative
algorithm of Figure 4.5 is employed. We proceed sequentially through
an ordered list of pages, repeatedly computing the page rank of each
page using the most recent computed values of its linked pages. If all
pages with no outgoing links are discarded, the average PageRank will
be 1.

PR(A) = d + (1− d) ∗
∑
j

(PR(Tj)/C(Tj)). (4.4)

The algorithm can be illustrated using the example in Figure 4.6,
where Page A can be seen as a home page that points to pages B and
C. Page B and Page C each point back to A. Therefore A has two links
leaving and two links entering, and B and C have one link entering
and one link leaving.

4.5 Web-Based Document Search 95

1. Use Equation (4.4) to compute PageRank for each page in
the collection using latest PageRanks of pages.

2. Repeat step 1 until no significant change to any
PageRank.

Figure 4.5. Computing the PageRank

Page A

Page CPage B

Figure 4.6. Example of Links between Pages

Table 4.1 shows the progress of the iterative PageRank computa-
tions. We arbitrarily assign initial values of 1 to pages A, B, and C.
Using a value of d = .1, in the first iteration, we compute as follows:

PR(A) = .1 + .9 ∗ (PR(B) + PR(C)) = .1 + .9 ∗ (1 + 1) = 1.9,

PR(B) = .1 + .9 ∗ (PR(A)/2) = .1 + .9 ∗ (1.9/2) = .95,

PR(C) = .1 + .9 ∗ (PR(A)/2) = .1 + .9 ∗ (1.9/2) = .95.

The process continues through 25 iterations, where the answer
stabilizes at PR(A) =1.48, PR(B) =.76, and PR(C) =.76.
Another popular method of using link structure is based on the

observation that the anchor text of a link describes its target. An-
chor text is the “clickable text” associated with a hyperlink that is
highlighted in an HTML (hypertext markup language) page. Most
current search engines associate the anchor text of a link with the
page it points to. One may also include ALT text for image hyper-
links when such text is available. As an example, in a hyperlink White House, the anchor
text is “White House.” We associate “White House” with the URL
“http://www.whitehouse.gov.” Since anchor text is typically created by
humans for the purpose of describing the linked target, it often gives a
high-quality summary of the page it points to. The effect of anchor text

96 4. Information Retrieval and Text Mining

Table 4.1. Iterative Computations of PageRanks

Iteration PageRank(A) PageRank(B) PageRank(C)
0 1.00 1.00 1.00
1 1.90 .95 .95
2 1.82 .92 .92
3 1.75 .89 .89
4 1.70 .87 .87
5 1.66 .85 .85
6 1.62 .83 .83
7 1.59 .82 .82
8 1.57 .81 .81
9 1.55 .80 .80

10 1.54 .79 .79
11 1.53 .79 .79
12 1.52 .78 .78
13 1.51 .78 .78
14 1.50 .78 .78
15 1.50 .77 .77
16 1.49 .77 .77
17 1.49 .77 .77
18 1.49 .77 .77
19 1.48 .77 .77
20 1.48 .77 .77
21 1.48 .77 .77
22 1.48 .77 .77
23 1.48 .77 .77
24 1.48 .76 .76
25 1.48 .76 .76

is quite similar to the title of a document in that a very small number
of terms are used to capture what a document is about. However, an
advantage of using anchor text is that there can be multiple people
generating different anchor texts for a particular page. Therefore, rel-
evant query words missing in the title may still appear in one of the
anchor texts.
The popularity and success of search engines that use link analysis

demonstrate the importance of looking beyond word analysis for some
information retrieval tasks. Link analysis is an evolving and often pro-
prietary technology. Based on experience, designers of search engines
include many special hooks to achieve their goals. For competitive
reasons, not all these special tweaks are revealed. Link analysis is
important, but other variations have evolved. For example, pages that
are connected by links are more likely to have the same topic than those

4.6 Document Matching 97

that are not. This observation can be used to rank or organize search
results. Alternatively, documents may first be categorized, and votes
from the same category are given a much higher weight. The main mes-
sage is clear. If we can compile a measure of popularity or frequency
of citation of documents, we can clearly improve our performance in
document retrieval.

4.6 Document Matching

We have contrasted search engines and prediction for text. One differ-
ence is the size of the documents, and another is the goal of assigning
a label or examining the retrieved comments. These differences are
not firm. A generalization of searching is document matching. As we
described for prediction, a complete document is matched, not just a
few key words. For document matching via a generalized search engine,
an arbitrarily long document is the query, but the goal is still to rank
and output an ordered list of relevant documents. The most similar
documents are found using the measures described earlier. Figure 4.7
shows the generalization of a search engine to document matching.
Why is it interesting to match complete documents? When only a few

words are presented, a document matcher behaves like a search en-
gine, where a user can add words, thereby specializing the search until
finding a satisfactory set of responses. But matching a long document
can also be interesting. Consider an online help desk, where a complete
description of a problem is submitted. That document could be matched
to stored documents, hopefully finding descriptions of similar problems
and solutions without having the user experiment with numerous key
word searches.

Figure 4.7. Generalizing Search to Document Matching

98 4. Information Retrieval and Text Mining

4.7 Inverted Lists

Matching a document to a collection of documents looks like a tedious
and expensive operation. Even for a short query, comparison to all
large documents in the collection implies a relatively intensive compu-
tation task. Information retrieval techniques do function in reasonable
time and have been developed to mitigate the complexity of sequential
comparison of all documents in a collection. The query’s words are
sparse relative to the dictionary’s words. Of greatest benefit is the use
of an inverted list. Instead of documents pointing to words, a list of
words pointing to documents is the primary internal representation
for processing queries and matching documents.
Figures 4.8 and 4.9 illustrate the concept of focusing on words rather

than documents. The natural representation for predictive modeling
was described in Chapter 2. Each document in the collection is rep-
resented as a list of its constituent words. Nearest-neighbor methods
compare a new example to stored examples. For information retrieval,
our representation is more specialized. A general distance measure is
not computed over all attributes. Instead, the measures of similarity
for IR are all based on positive co-occurrences of query and matched
document words. So if a word is absent from the query, it will have no
contribution to the similarity measure. Moreover, the only documents
of interest are those where a query word appears.
It is trivial to convert from a document order to a word order. In

Figure 4.10, an example with both orders is shown. The conversion from
one order to the other is straightforward.
When a query is presented, we process each of its words. The word

list tells us the documents where the word appears. As the word list
is processed, the similarity measure for the indicated document is in-
creased by the requisite amount. If we were using just a binary count,
then for each word on the list, a 1 would be added to the similarity
measure of that document. In our example, if the query contained

Figure 4.8. Documents Pointing to Words

4.7 Inverted Lists 99

Figure 4.9. Words Pointing to Documents

Document Order Word Order
Documents Words Words Documents

1 5, 100
2 100, 200 5 1, . . .
.

100 1,2, . . .
.
200 2, . . .
.

Figure 4.10. Document Order and Word Order

words 100 and 200, then we would proceed through the following steps,
first processing W(100) and then W(200) to compute the similarity S(i)
of each document i:

S(1) = 0 + 1
S(2) = 0 + 1

. . . Other documents with W(100) . . .

S(2) = 1 + 1
. . . Other documents with W(200) . . .

The inverted list is the key to the efficiency of information retrieval
systems. Similarly, for purely predictive methods, the same efficiencies
can be adopted and implemented. We see that search engines operate
quite efficiently. Other methods such as the linear score are more effi-
cient for predictive applications because they have trained and found
a mathematical formula to apply. The expectation of sparseness, the
positive-match similarity measures, and the inverted list have all con-

100 4. Information Retrieval and Text Mining

tributed to making nearest-neighbor methods a pragmatic possibility
for prediction. An implementation of document matching is available
in the accompanying software.

4.8 Evaluation of Performance

Information retrieval methods are specialized nearest-neighbor meth-
ods, which are well-known prediction methods. IR methods typically
process unlabeled data and order and display the retrieved documents.
For prediction of a new document, a supplementary step augments
the usual retrieval. The labels of the k most similar documents are
counted, and a class assignment is made. In the context of labeled
prediction, the methods described in Chapter 3 for evaluation are ap-
plicable. For example, a test set of documents can be used to measure
an error rate.
For most applications, the date of appearance of documents is impor-

tant. The most appropriate testing is to look at documents appearing
at an earlier date and test on a later date. For example. if we were
trying to determine whether the stock market would go up or down,
the documents that we examine should be from a period prior to when
the stock price is known. There may be applications where time is
less important. For these applications, information retrieval methods
would have a natural way of evaluating predictive performance. Unlike
other learning methods such as linear scoring, the IR methods have no
training and induce no new rules for classification other than deter-
mining the value of k, the number of nearest neighbors to be used in
counting the labels. For each document from the collection, or from a
random subset, the nearest neighbors could be retrieved along with
their labeled answers. The accuracy for a specific value of k could be
determined.
Both measuring accuracy and selecting k during the same exper-

iments are slightly optimistically biased even when the document
collection is large. It’s the most pragmatic approach for a real appli-
cation. Finding k over many classes is a much more tedious effort.
For example, to assign topics, such as finance or sports, to newswires
might require finding a different k for each topic. Such an approach
is not very practical and is questionable when the same test data are
reused. Instead, the same value of k is usually selected for most classes,
perhaps with some allowances made for the rare classes. Couldn’t we

4.9 Historical and Bibliographical Remarks 101

just use the label of the single most similar document? In general, that
answer will be weaker than using more than one document.
Search engines and document matchers are not focused on classifi-

cation of new documents. Their primary goal is to retrieve the most
relevant documents from a collection of stored documents. How do we
measure whether that goal is achieved? We could ask users to rate the
results of a search engine and we would apply some measure of accu-
racy. For example, we may ask how many of the top k (typically top 10)
pages returned are relevant. This effort is a form of assigning labels.
For the Web, the user community measures effectiveness by choosing
from among the many search engines. Newer search engines have
displaced the originally dominant ones because users have switched
en masse to the search engines that gave them the best results. The
evaluation is by voting of a user community. Interestingly, the search
engines that win in the marketplace simulate this voting experience by
using link analysis as a proxy for the vote of the user community.

4.9 Historical and Bibliographical
Remarks

Many of the ideas discussed above have been part of the technical
repertoire of information retrieval specialists for many years. The
SMART system ([Salton, 1964]; [Salton and Lesk, 1965]; [Salton and
Lesk, 1968]) incorporated the vector representation of documents and
queries and the idea of using the cosine of the angle between vectors
as a correlation coefficient. The system also had the ability to rank
answers according to the value of the correlation coefficient. Evalua-
tion of the various ways to configure the SMART system was measured
by precision and recall and the 10-point precision–recall curve [Salton
and Lesk, 1968]. The idea of weighting query terms by a combination of
term frequency and inverse document frequency is explained in [Salton
and Wu, 1980].
The PageRank algorithm, discussed in [Page and Brin, 1998] and

[Page et al., 1998], is a modification of the Hubs and Authorities al-
gorithm [Kleinberg, 1999]. This method for ranking pages for output is
the essential idea in the Google retrieval engine (but is not the complete
story, which is proprietary). The basis for this algorithm is another
old idea in information retrieval called “citation analysis,” pursued for
many years by Eugene Garfield [Garfield, 1972].

102 4. Information Retrieval and Text Mining

Research in Web-based information retrieval has been supported by
the TREC (Text Retrieval Conference) program in recent years. The
detailed descriptions of the program, with proceedings of the previous
years, can be found at http://trec.nist.gov. There are two main Web-
retrieval-related evaluations, one for home-page finding and the other
for topic distillation. The goal of home-page finding is to return the
main page of a site. For this task, link analysis is quite useful. The
goal of topic distillation is to find relevant pages for more specific query
topics. In this task, a query is addressed by the content of relevant
pages. Therefore, traditional IR-based retrieval methods work quite
well, and link analysis seems less useful.
In addition to the simple document-matching method we described

in this chapter, more sophisticated methods have also been proposed.
They can be regarded as ranking functions that determine the rele-
vance of a document to a query. For example, one such formula, called
BM25 [Robertson et al., 1994], has been quite successful in some TREC
evaluations. However, a disadvantage of such methods is that they of-
ten contain a number of parameters that need to be tuned. In principle,
one may also use machine-learning methods to learn unknown parame-
ters of a ranking function or to combine the outputs of different ranking
functions. Given a query, we need to predict whether a document is
relevant to a query or not. The ranking score of a document can then
be interpreted as the degree or probability of its relevance to the query.

5

Finding Structure in a
Document Collection

Prediction methods look at stored examples with correct answers and
project answers for new examples. One would expect that if we cannot
obtain answers for the training examples, then the process cannot
be completed. Given a collection of documents, we have no problem
transforming the unstructured set of words for each document into a
structured spreadsheet. But the last column also must be filled in. In
Figure 5.1, we see a spreadsheet, a list of labels, and the spreadsheet
column containing the labeled answers. Someone must compose a list
of potential labels. Given the list, someone assigns labels to the doc-
uments. Sometimes label assignment can be automated, such as the
label that a company’s stock price has risen. In most instances, such
as topic assignment to newswire articles, the assignment of labels is
done by humans, and this can be a tedious and expensive task. Is there
any way to assign labels automatically to a document collection? We
will discuss this task. Not only will the labels be assigned, but the
list of labels will also be determined automatically. Because such key
information is missing from the problem description, our expectations
for accurate predictive performance should be reduced from standard
prediction applications with labeled data.
Our objectives are to determine labels and assign them to doc-

uments. If we were very confident of meeting these goals by some
automatic process, we would completely bypass the expense of having
humans assign labels, but the process known as document clustering
is less than perfect. The labels and their assignment may not be the

104 5. Finding Structure in a Document Collection

Label List

Labels

Labeled
Spreadsheet

1

01

1

1

1
1

1
1

1
1

1

1

1

1
0

0 0 0
0 0 0 0

0 0 0
0 0 0
0 0 0

0

0 0

2
1
3
1
3
1
2

Finance
Sports
Politics

Figure 5.1. Spreadsheet with Labels

Document Collection

Clusters

D1

D1
D2

D7

D3

D9

D12

D11

D9
D11

D10

D8
D6

D5

D4
D3

D2

D3D5

D6

D4
D6D7 D10

D12

Figure 5.2. Clustering a Document Collection

same as those composed by humans or those collected from some objec-
tive process that uses external information such as stock price change.
Document clustering assigns each of the documents in a collection to
one or more smaller groups called clusters. Based on an examination
of their words, these clusters should contain similar documents. The
initial collection is a single cluster. After processing, the documents are
distributed among a number of clusters, where ideally each document
is very similar to the other documents in its cluster and much less
similar to documents in other clusters. Figure 5.2 illustrates the overall
task of taking a complete collection and assigning its documents to
smaller clusters.
It is quite reasonable to expect that documents having the same label

will be similar. If a human composed the labels, these goals were likely
known prior to assembling the structured data. The labels have an

5 Finding Structure in a Document Collection 105

important meaning, often identifying the goals of the project. Given
a list of labels, the examples represented in the sample were then
assembled and the labels assigned. Prior to document clustering, the
labels are unknown. Instead, a measure of similarity is used to group
the documents. Only after clustering are the groups examined to give
meaning to each cluster. The clustered documents do form groups, but
their meaning is implicit in the grouping. The process did not start
with a good understanding of specific goals. So only after it is completed
and the clusters have been reviewed can we say that something useful
has been achieved.
For an application, there are many ways to organize data into

groups. Consider the following experiment: Take a collection of labeled
documents, and then cluster them while ignoring the labels. Will the
document clusters number the same as the originally labeled classes?
Will each cluster be pure so that all of its documents have the sin-
gle original label? In general, the results will not match exactly. In
many applications, there will be some clusters that are very close to
the original classes but others that are far away. This doesn’t mean
that the clustering process is unsuccessful. Its objective is to group the
documents by similarity. Its notion of similarity may not be the same
as, and may not meet the objectives of, the composer of the original
labels.
If document clustering is so murky, why would anyone attempt it?

Clustering gives additional structure to the sample data, and that can
be useful. In the best case, the clusters relate to a goal that is similar
to one that would be attempted with the extra effort of manual label
assignment. In that case, the label is an answer to a useful question.
If we are at a stage where the question has to be formulated, then
the process of document clustering can be informative. For example,
suppose a company is operating a call center where users of their
products submit problems, hoping to get a resolution of their difficul-
ties. The queries are problem statements submitted as text. Surely the
company would like to know about the types of problems that are being
submitted. Clustering can help us understand the types of problems
submitted. Printer problems might cluster in one group and network
problems in another. For a fixed number of clusters, such as 100 differ-
ent clusters, someone could review each of the clusters to find the most
frequent types of problems received by the call center. These might be
characterized by identifying key words found for a cluster.

106 5. Finding Structure in a Document Collection

5.1 Clustering Documents by Similarity

If our goal is prediction, then similarity measures, as embodied in
information retrieval and nearest-neighbor methods, are usually not
the first choice. They are unable to simplify a solution by directly
learning from labeled examples. Yet, when we discuss document clus-
tering, similarity measures assume a prominent role. Here the data
are unlabeled and similarity of documents is the defining characteristic
for assigning labels. So, to cluster documents, it is natural to reexam-
ine the information retrieval techniques and their integral similarity
measures.
To cluster documents, it will be necessary to compare documents

and group together those that are similar. As shown in Figure 5.3
and as is typical of information retrieval, two documents are compared
and a measure of similarity is computed. For document clustering,
the scenario in Figure 5.4 is more common. A composite document
is compared with another composite document. The composite doc-
ument represents many documents either in summary form or by
their individual member documents. How do we represent a composite
document? Some clustering methods, such as hierarchical clustering,
maintain links among the composite document, the cluster, and all
their member documents. Other methods, such as k-means clustering,
summarize the composite cluster by classical statistics using averages
of individual measurements.

Document 1

Compute Similarity Similarity Score
Document 2

Figure 5.3. Computing Similarity of Two Documents

Each of these approaches has advantages and weaknesses. Relative
to prediction, we are operating in a fog, so that predictive accuracy
is not necessarily the deciding factor in choosing an approach. There

5.2 Similarity of Composite Documents 107

Composite Document 1

Compute Similarity Similarity Score

Composite Document 2

Figure 5.4. Computing Similarity for Clustering

is much research literature on clustering documents. For our pur-
poses, a few prominent methods are sufficient to highlight contrasting
approaches to comparing single or composite documents.

5.2 Similarity of Composite Documents

Information retrieval methods can dynamically obtain the documents
most similar to any other document. So, for many applications, why
bother to predefine groups of documents? These relationships may be
found dynamically by matching a document with others and measuring
their similarity. For example, some attempts have been made to add a
clustering component to responses of a search engine. The idea is to
group the answers, the linked documents, into different categories so
that the user can get an overview of all answers instead of processing
sequentially through the first 10 or 20 documents. In general, though,
the supplementary clustering information has had limited success be-
cause the ordered response of a search engine may trump a clustered
view of all documents, including the weaker ones.
We have mentioned some applications where it is beneficial to orga-

nize the documents by groups. This is especially true when one knows
little about the structure of the documents and one wants an overview
of their contents. In terms of prediction applications, document cluster-
ing provides a direct solution to a data acquisition problem. We have no
labels. Our spreadsheet is missing a column, and this is a rational way
of filling in the last column. Although these entries in the column may
be answers in search of a problem, they provide a means for further
analysis and prediction.

108 5. Finding Structure in a Document Collection

The similarity measures that will be considered are the same ones
discussed in Chapter 4. The most widely used is cosine similarity,
shown in Equation (4.3) from Chapter 4, where the normalized tf-
idf vectors of two documents are compared. Instead of comparing two
documents, clustering compares pairs of either single or composite doc-
uments. How can we compute similarity? Several obvious ways have
been used to represent comparisons among composite documents.
The simplest way to summarize a cluster is to create a composite

document by averaging the documents in the cluster. Each document
is represented by a vector of measurements. These might be the nor-
malized tf-idf measurements. For each measurement in the vector,
the mean can be taken. The result is a single summarizing vector
for a cluster. Thus we have a composite document represented in the
usual vector format. Comparing another document with the mean vec-
tor of the composite document is the same process as comparing two
documents. In text analysis, one often uses a normalized document
vector representation. Similarly, one can normalize the mean vector
of the composite document. For cosine similarity, the two vectors are
multiplied, assuming they are normalized.
The cluster was summarized by averaging the vectors of all docu-

ments in the cluster. This results in a new vector. It can be compared
with any single document or with other clusters that also have mean
vectors. Alternatives can be considered for the summarizing vector.
Each of the constituent documents that are members of the cluster can
be examined, and they could be candidates for a summarizing vector
to characterize the cluster. Given a document not in the cluster, our
objective is to find its similarity to the documents in the cluster. We
can compare the new document to each of the documents in the cluster
and note their similarity. We can also compare two clusters by com-
paring all pairs of documents, one from each cluster. Then we measure
similarity by the similarity of the best pairs. Which are the best pairs?
Two measures have been used:

• single link: the two most similar documents

• complete link: the two least similar documents

We need not make any distinction between single documents and
composite documents. A single document could be considered a cluster
of one document. For a single link, when we compare all clusters, the
global best pair is the two most similar documents from any two differ-
ent clusters. For a complete link, similarity is measured in two steps.

5.2 Similarity of Composite Documents 109

Composite Vector 1

Compute Similarity

Similarity Scores

Composite Vector 2

0.2, 0.7, 0.3

0.7, 0.4, 0.1

0.3, 0.5, 0.2

0.8, 0.1, 0.9
With mean: 0.47

With nearest: 0.50

With farthest: 0.45

Figure 5.5. Example of Similarity Computation for Composite Documents

First, we select a pair of clusters to compare. For each pair of clusters,
the measure of similarity is the two least similar documents, one from
each cluster. The result of the first step is a single similarity measure
for each pairwise comparison of clusters. In the next step, we find the
single best pair, which is the one with the greatest similarity. The two
most similar clusters are the two clusters with the greatest minimum
pairwise similarity.
Measures of similarity for composite documents are illustrated in

Figure 5.5, where the first composite vector has three vectors and the
other has one. In this example, similarity of two vectors is computed by
their inner product, i.e., multiplying the non-normalized components
of each vector and summing over all components. The mean vector is
a one-time computation for the cluster, and the resultant new vector is
immediately available for direct comparison with other vectors. Using
this averaged vector is considered a faster comparison than comparing
individual pairs from different clusters.
We will look at one method, k-means, that requires using the mean.

For hierarchical clustering, any of the three measures can be used.
Knowledge of the application and efficiency will strongly influence the
choice of clustering method.

5.2.1 k-Means Clustering
k-means is a classical clustering method that has been adapted to doc-
uments. It is very widely used for document clustering and is relatively
efficient. The concept is illustrated in Figure 5.6, where the documents
start in one pile and are then distributed into smaller piles of similar
documents. For purposes of prediction, each pile of documents can be
considered a unique label.

110 5. Finding Structure in a Document Collection

Documents

Clusters

Figure 5.6. Assigning Documents to Clusters

1. Distribute all documents among the k bins.

2. Compute the mean vector for each bin.

3. Compare the vector of each document to the bin means and note the
mean vector that is most similar.

4. Move all documents to their most similar bins.

5. If no document has been moved to a new bin, then stop; else go to step
2.

Figure 5.7. The k-Means Clustering Algorithm

How do the documents end up in the right cluster? The name k-
means implies that k clusters will be used, and the means of these
clusters will play an important role. Figure 5.7 describes the algorithm.
Documents are moved among a fixed number of bins until no improve-
ment can be found. How are the documents initially distributed among
the bins? The classical approach of k-means is to randomly assign the
documents to the bin. Because the algorithm halts at a local minimum,
several runs with random assignment may be necessary to get the best
answer. An alternative approach that we have used is to compute the
global mean vector of all documents, compute the similarity of each
document to this vector, sort the similarity measures and correspond-
ing documents, and assign equal numbers of documents in sorted order
to the bins. The k-means algorithm is then applied, but only moves
between the adjacent bins are considered for moving a document.
Note that if the original documents are represented as normalized

vectors, then, in step 2, the mean vector can also be normalized. Fig-
ure 5.8 is an example of the application of k-means for two clusters,
five documents, and hypothetical vectors containing only a single word
measured by frequency.

k-means will typically converge to its minimum after relatively few
iterations. When the number of bins is much smaller than the number

5.2 Similarity of Composite Documents 111

Documents in Clusters

Cluster 1 Cluster 2
Initial: 0,4,2,3,4

Step 1: 0,4 2,3,4
mean=2 mean=3

Step 2: 0,2 4,3,4
mean=1 mean=3.67

Step 3: 0,2 4,3,4
mean=1 mean=3.67

Figure 5.8. Example of k-Means Clustering (for k=2)

of documents, which is the expected case, the algorithm can be consid-
ered efficient. As the number of bins grows large, efficiency diminishes.
At the limit each bin is a single document and every document is
compared with every other document during each iteration.
The main conundrum for k-means clustering is to determine k, the

number of clusters. The method has no knowledge of the right k, so
it is our burden to specify k. How do we do this? Very often, for an
application, we have a good idea on a relative basis for choosing k. We
may know that five or ten bins are all that are reasonable. If we expect
great diversity, such as for our call center example, we might choose
a larger number like 100. If we know something about the nature
of the documents, we may also know something about a reasonable
number of labels or categories. In general, the number of bins should
be far smaller than the number of documents. Otherwise, prediction
and generalization to new documents will be weakened.
Is determining k strictly guesswork? For k-means, we can use some

of the empirical techniques that were described in Chapter 3. The k
in k-means is similar in concept to the k in k-nearest neighbor. It
is a complexity measure that we can estimate from the sample. For
the k-nearest neighbor method, we choose k based on the value that
minimizes test error. For clustering, an alternative measurement, an
objective function, is employed to measure overall performance. For k-
means, an objective function analogous to error rates can be described.
Let xi be the i-th document vector, and ci ∈ {1, . . . ,k} be its corre-
sponding cluster index, a typical measure is the total variance from

112 5. Finding Structure in a Document Collection

the cluster means as described in Equation (5.1) for k clusters.

E(k) =
n∑

i=1

(xi −mci)
2

n
. (5.1)

For each document vector xi and its cluster mean mci , compute the
squared error averages over all n documents, E(k). Then we vary k,
perhaps by starting with two clusters, then four, and continuing to
rerun k-means and doubling the number of clusters, stopping when k
is too large. We then compare the objective function values for varying
k. We choose k based on the point where increasing k does not yield a
commensurate decrease in variance.
After the algorithm is completed, a set of labels can be assigned to

the original spreadsheet. At that point, we have a standard classifica-
tion and prediction problem. That implies that any learning method
for classification could be applied. We should not forget the pedigree of
this method. Because the labels were assembled by looking at the mean
vectors of cluster documents, the natural prediction method is to use
the same technique to classify and predict new documents. If we store
a mean vector for each cluster and its assigned label, then, for any new
document, we compare its vector to the mean vector corresponding to
each label. The one that is most similar is assigned the new label.
We know that the clustering algorithm was applied to maximize

similarity to the mean. That suggests using the same classifier for new
data. In general, using just the means of a set of measurements for
prediction is a very weak method for most prediction problems. A small
number of classes with a high variance would suggest that using means
is highly simplistic. A large number of classes with few examples in
each class might suggest poor generality for assigning new documents.
These issues increase the importance of specifying the right number
of classes. Do these weaknesses imply that k-means is inadequate?
Not at all. We start with no labels. We have the freedom to choose
our path unconstrained by a set of correct answers. Why not choose
a straightforward and efficient approach from among the multitude of
clustering methods developed by researchers in the absence of strict
guidelines on correctness?
The accompanying software includes an implementation of k-means

for documents. The k-means clustering may well be the world’s most
widely applied method for statistical clustering. It is readily adapted
to documents and the vector representation, but it is also widely used
in other fields.

5.2 Similarity of Composite Documents 113

5.2.1.1 Centroid Classifier

The mean of document vectors in a category is often referred to as the
centroid of the category. It can be used for the purpose of prediction.
Assume that we have k categories indexed by c = 1, . . . ,k, each with a
centroid mc. When a future document x comes in, their inner product
x ·mc can be computed, and we pick the category associated with the
largest inner product as the label of the document.
Figure 5.9 shows an example with four training documents parti-

tioned into two classes, C1 and C2. The new document in this example
is classified as C2 by this method.
The classification procedure described above is called the centroid

method. If the documents and the centroid vector are normalized, then
the inner product corresponds to the cosine measure. The centroid
method has an intuitive meaning in this case since the closer the two
documents are, the larger their inner product will be. The value of their
inner product is a quantity in [0,1], which can be used to measure the
confidence of the classification result.
Although, generally speaking, the prediction accuracy of the cen-

troid method is lower than for other prediction methods described in
Chapter 3, it has certain advantages that can be important in practice.
First, computation of the centroid is very simple and efficient. One only
needs to store the centroid vector. The method can be easily adapted
to the online setting since we only need to store the total sum and
the number of vectors in order to compute the centroid. Secondly, the
cosine measure has a very intuitive meaning, which can be used as
an indicative measure to determine the confidence of the classification
result.
In addition, the construction of the centroid of a category only re-

quires positive data in the category and does not depend on negative
data outside of the category. This is a very desirable property that can

Class Class Vectors Normalized Centroids (mclass)
C1 (1,2,0,0), (0,2,0,0) (.24,.97,0,0)
C2 (1,0,1,1), (0,0,1,2) (.27,0,.53,.80)

New document to be classified: (1,0,1,0)
Normalized new document (x): (.71,0,.71,0)

Similarity (inner product) between x and mC1: .17
Similarity (inner product) between x and mC2: .57

New Document classified as: C2

Figure 5.9. An Example of Centroid Classification

114 5. Finding Structure in a Document Collection

be important in some practical applications. For example, a dynamical
environment often requires the users to constantly update the category
structure and either include or remove different types of documents.
The whole document collection changes frequently, although the def-
inition of any particular topic may remain the same over time. Since
in this case the distribution of the negative data changes constantly,
a classification method that relies only on the positive data becomes
very desirable. Next we turn our attention to another method that is
particularly attuned to information retrieval.

5.2.2 Hierarchical Clustering
Hierarchical (agglomerative) clustering is a popular alternative to k-
means clustering of documents. As expected, the method produces
clusters, but they are organized in a hierarchy much like a table of
contents for a book. Similarity is decided by averages and also by max-
imum and minimum distances between documents within a cluster,
measures that some feel are more consistent with information retrieval
and its similarity measures.
The major weaknesses of hierarchical clustering are timing and

computational complexity. The method is intended for clustering a rela-
tively small number of documents. For k-means, we expect the number
of clusters to be far smaller than the number of documents. Each com-
parison is with the cluster mean, so the computations and comparisons
grow approximately linearly with the number of documents. For hierar-
chical clustering algorithms that compare pairs of documents and not
averages, the similarity between all pairs of documents is computed
prior to clustering, so the complexity is of the order of the number of
documents squared. The algorithms that involve using the least similar
document in a cluster as the best are even more computation intensive.
Thus we need to be judicious in applying these methods.
Figure 5.10 is an algorithm for hierarchical agglomerative clustering

(HAC). The result will be a binary tree with links of parent clusters to
their partitioned clusters. The root node contains all documents, and
these are recursively partitioned into smaller clusters. Unlike decision
tree induction for prediction, the HAC trees are built from the bottom
up. Pairs of clusters are recursively combined until only one cluster
remains. The terminal nodes of the tree are the actual clusters. A tree
may be pruned to find a smaller tree that is more desirable than the
fully grown tree.

5.2 Similarity of Composite Documents 115

1. Start with all documents as single-member clusters.

2. Find the best pair of clusters having no parents: B and C.

3. Combine the documents in B and C into a parent cluster A.

4. If more than one cluster remains with no parents, go to step 2.

Figure 5.10. The Hierarchical Clustering Algorithm

Figure 5.11 is an example of hierarchical clustering. The same data
used in Figure 5.8 to illustrate the k-means algorithm are used here
as well. If we specify a fixed number of clusters, in this example two
clusters, then we see that k-means performs somewhat better. To get
two clusters, we prune the decision tree to just the root node and its
two children. Comparing the variance, the average squared error from
the cluster mean shows a higher variance for hierarchical clustering.
If a hierarchy or taxonomy is not needed for the application, and an
average value is sufficient to characterize a cluster, then k-means has
the advantage. Using either single or complete link analysis may be
a better fit to information retrieval, where the k-nearest neighbors are
of interest. Using the single-link criterion (i.e., most similar document)
can lead to chaining documents that are distant to other members. The
complete-link analysis (i.e. least similar document) is considered more
desirable, but has an extravagant computational time.
The binary tree produced by the hierarchical clustering method is

a map of many potential groupings of clusters. We can process this
map to get an appropriate number of clusters, something that is more
difficult with k-means, where we usually rerun the procedure when we
specify a new value of k. If we have a specific number of clusters in
mind, then the tree can be pruned at the right depth to ensure that
number of clusters. We followed that route in our example. The leaf
nodes of the pruned tree represent the accepted clusters.
Chopping a tree to produce equal-length branches is one way to get

a result corresponding to a fixed number of clusters. It also produces
a balanced table of contents. It is often unnatural for an application
when the tree produces a lengthy chain of entries. From a prediction
perspective, one is tempted to prune differently. Prune the branches
that result in the least change to some overall measure of performance.
In the case of using a mean vector as a summary of the cluster, a
comparison could be made between the variances for the children and
the parent. Then the nodes having the least difference could be pruned

116 5. Finding Structure in a Document Collection

Step 1:
Cluster1

0

Cluster2

2

Cluster3

3

Cluster4

4

Cluster5

4
Step 2:

Cluster1

0

Cluster2

2

Cluster3

3

Parent1 (mean=4)

Cluster4

4

Cluster5

4
Step 3:

Cluster1

0

Parent2 (mean=2.5)

Cluster2

2

Cluster3

3

Parent1 (mean=4)

Cluster4

4

Cluster5

4
Step 4:

Cluster1

0

Parent3 (mean=3.25)

Parent2 (mean=2.5)

Cluster2

2

Cluster3

3

Parent1 (mean=4)

Cluster4

4

Cluster5

4
Step 5:

Root (mean=2.6)

Cluster1

0

Parent3 (mean=3.25)

Parent2 (mean=2.5)

Cluster2

2

Cluster3

3

Parent1 (mean=4)

Cluster4

4

Cluster5

4

Figure 5.11. Example of Hierarchical Clustering

recursively and a judgment could be made to trade off complexity of
the tree against a potential increase in variance. We examined such
an analysis in Chapter 3 relative to rule induction. For clustering,
we do not have absolute truth, so one can rely more on intuition and
knowledge. Our tendency is to select a pruned tree that still has much
less variance than the single root node that pools all documents, yet is
far less complex than a fully grown tree.

5.2 Similarity of Composite Documents 117

5.2.3 The EM Algorithm
Clustering can also be viewed from a statistical point of view. We still
consider k-clusters. If we represent each document as a vector xi and
let yi be the corresponding cluster label that takes possible values
{1, . . . ,k}, there are two different scenarios:

• Hard clustering: we allow each yi to take only one value from
{1, . . . ,k} with probability one.

• Soft clustering: each yi takes the value c ∈ {1, . . . ,k} with
probability qi,c (

∑k
c=1 qi,c = 1).

The popular k-means algorithm can be regarded as a hard-clustering
method, where each document is uniquely assigned to a single clus-
ter. Soft clustering assigns a probability that a document belongs to
a specific cluster. From the description above, soft clustering appears
to be more general since it includes hard clustering as a special case.
However, in practice, people almost always use a specific method to
assign the probability qi,c based on a mixture of statistical models and
the expectation maximization (EM) algorithm. This method has a very
natural statistical interpretation and can be combined with sophisti-
cated statistical modeling techniques. Due to this advantage, it has
been very widely used. We shall present this algorithm in its general
form and then discuss its relationship to the k-means method.
Statistically, given a set of k clusters, one can assume that data are

generated in two stages. First we pick a cluster c from {1, . . . ,k} with
a fixed probability μc (

∑k
c=1 μc = 1); then we generate data points x

according to a probability distribution pc(x|θc). The model parameters
θc for each cluster c should be estimated from the data. They character-
ize the unknown information that we want to determine from the data
with our clustering algorithm.
Mathematically, the data generation mechanism above corresponds

to a mixture model, where the likelihood of a data point x is

p(x) =
k∑

c=1

μcpc(x|θc). (5.2)

Each cluster c is a mixture component. Given a data point x, its label y
can be interpreted as the cluster that generates x. The probability of x
being generated from the cluster y ∈ {1, . . . ,k} is given by

p(y|x) =
μypy(x|θy)∑k
c=1 μcpc(x|θc)

. (5.3)

118 5. Finding Structure in a Document Collection

This is the natural formula to use for assigning cluster labels in a
statistical soft clustering algorithm and is used in the EM method.
The derivation of EM is based on an important property of Equation
(5.3), which we will consider next. We introduce hidden variables qy

for each label y = 1, . . . ,k such that [qy] is a probability measure:
qy ≥ 0 and

∑k
c=1 qc = 1. A well-known fact from information theory

states that the mutual entropy between [qy] and [p(y|x)], defined as∑k
c=1 qc ln(qc/p(c|x)), is always nonnegative. It is easy to see that the

equality with zero can be achieved at qc = p(c|x). Using the expression
of p(c|x) in Equation (5.3), we can rewrite this inequality as

ln
k∑

c=1

μcpc(x|θc) ≥
k∑

c=1

qc ln
μcpc(x|θc)

qc
,

where the equality holds with qc = p(c|x). This property, which we
restate below in Equation (5.4), is a crucial step in the derivation of
the EM method.

ln
k∑

c=1

μcpc(x|θc) = max
q1,...,qk

k∑
c=1

qc ln
μcpc(x|θc)

qc
, qc ≥ 0,

k∑
c=1

qc = 1, (5.4)

where the maximum on the right-hand side is achieved at qy = p(y|x)
with p(y|x) given by Equation (5.3).
Given a mixture model as in Equation (5.2), the most widely used

statistical estimation technique for finding the parameters θc (c =
1, . . . ,k) from a set of data xi is the so-called maximum-likelihood es-
timation method, which picks a parameter to maximize the observed
likelihood of the data

∏n
i=1 p(xi). That is, we find θc by solving the

following optimization problem:

max
θ1,...,θk

n∑
i=1

ln
k∑

c=1

μcpc(xi|θc). (5.5)

The parameters μc are assumed to be given and often just take a uni-
form distribution μc = 1/k. The EM method is essentially a numerical
technique to find a local optimum of Equation (5.5). It is based on the
following reformulation of Equation (5.5) using Equation (5.4):

max
θ1,...,θk

n∑
i=1

max
qi,1,...,qi,k

k∑
c=1

qi,c ln
μcpc(xi|θc)

qi,c
, qi,c ≥ 0,

k∑
c=1

qi,c = 1. (5.6)

The EM algorithm is an alternating optimization method applied to
Equation (5.6). In the E step, we fix θc and solve for qi,c. Since each
subproblem has the same form of Equation (5.4), the solution is given

5.2 Similarity of Composite Documents 119

Initialize θ1, . . . θk
iterate

for i = 1, . . . ,n do
qi,c = μcpc(xi|θc)∑ k

l=1 μlpl(xi|θl)
(c = 1, . . . ,k) (E step)

end for
for c = 1, . . . ,k do
Solve θc by solving maxθc

∑n
i=1 qi,c lnpc(xi|θc) (M step)

end for
until convergence

Figure 5.12. The EM Algorithm

by Equation (5.3). In the M step, we fix qi,c and solve for θc for each c.
The method is summarized in Figure 5.12.
Although in theory the EM method may converge slowly, practition-

ers often find that 20 iterations gives satisfactory results. It is also
necessary to start EM with different initial parameters that are often
generated randomly. This is to improve local optimal solutions found
by the algorithm with each specific initial parameter configuration.
The EM algorithm for maximizing Equation (5.6) is based on sta-

tistical modeling and maximum-likelihood estimates. By modifying
Equation (5.6), we can also obtain different clustering procedures
(which do not necessarily have maximum-likelihood estimate interpre-
tations). For example, hard-thresholding methods such as k-means can
be obtained by changing Equation (5.6) to

max
θ1,...,θk

n∑
i=1

max
qi,1,...,qi,k

k∑
c=1

qi,c ln(μcpc(xi|θc)), qi,c ≥ 0,
k∑

c=1

qi,c = 1 (5.7)

To solve this optimization problem, we can still use the EM algorithm
in Figure 5.12 but with the E step replaced by the hard cluster as-
signment rule: qi,c = 1 if c = argmaxl(μlpl(xi|θl)), and qi,c = 0
otherwise.
The EM algorithm can be used with any probability model, such

as the naive Bayes model, which we described in Chapter 3. An-
other frequently used model is the Gaussian model, where we assume
pc(x|θc) ∝ exp(− (θc−x)2

2σ2). The simplest case is to assume that σ is a
known quantity such as 1, and μc = 1/k. Under this assumption, Fig-
ure 5.12 can be used to compute the mean vectors θc for the Gaussian
mixture model, where the E and M steps are given by

120 5. Finding Structure in a Document Collection

Document Vectors x1 = [0], x2 = [2], x3 = [3], x4 = [4], x5 = [4]

Cluster 1 Cluster 2

Initial: mean=2.0 mean=3.0
Step 1: E step q·,1 = [0.9, 0.8, 0.6, 0.2, 0.2] q·,2 = [0.1, 0.2, 0.4, 0.8, 0.8]

M step mean=1.3 mean=3.3

Step 2: E step q·,1 = [1.0, 0.9, 0.6, 0.0, 0.0] q·,2 = [0.0, 0.1, 0.4, 1.0, 1.0]
M step mean=0.9 mean=3.6

Step 3: E step q·,1 = [1, 1.0, 0.7, 0.0, 0.0] q·,2 = [0.0, 0.0, 0.3, 1.0, 1.0]
M step mean=0.9 mean=3.7

Figure 5.13. An Example of EM Clustering

• (E step) qi,c =
exp

(
(xi−θc)2

2σ2

)
∑ k

l=1 exp
(

(xi−θl)
2

2σ2

) ,

• (M step) θc = 1∑ n
i=1 qi,c

∑n
i=1 qi,cxi.

This clustering method can be regarded as a soft k-means method. If
we replace the E step by the hard cluster assignment rule mentioned
above, then we obtain the standard k-means method.
Figure 5.13 gives an example of EM iterations with a two-component

Gaussian mixture model and σ = 1. We still use the k-means example
in Figure 5.8, with the mean vectors initialized to 2.0 and 3.0. We re-
port the probability assignment qi,c for each document i in each cluster
c after the E step and the mean-vectors for the clusters after the M
step.

5.3 What Do a Cluster’s Labels Mean?

Let’s assume that we have successfully clustered the documents. At
the end of the process, we have k clusters. We can assign numbers
to correspond to different clusters. Documents within the same clus-
ter are expected to be similar. Yet, we need greater insight into the
process than just assigning a label without expressing meaning. In a
labeled prediction problem, the labels are assigned with care, often
corresponding to some exact event. For example, in text categorization,
the labels are specific categories for indexing documents, such as sports
or financial newswires. Although computer programs have no need

5.3 What Do a Cluster’s Labels Mean? 121

Figure 5.14. Principal Descriptors of Clusters

for associating meanings to clusters, the reason for even attempting
prediction is the meaning and significance of the list of labels. Where
is this meaning for our clustering labels?
Figure 5.14 shows the principal descriptors of the automatically gen-

erated cluster labels. They are explained andmotivated by key words or
exemplar documents. We should not lose sight of what we are cluster-
ing. Documents are composed of words, and the distribution of words
is the basis of document clustering. Surely we can use these words
to express the meaning of the result of the clustering. Documents are
clustered by similarity of words, so if we characterize a cluster by the
right words, we should be able to give the meaning or rationale for the
reasonableness of the cluster.
The clusters have been assembled by automated procedures, a task

that humans would not attempt on their own. In a follow-up step, the
computer may indicate the key words that are representative of each
cluster. This step is not very different from composing a local dictio-
nary for labeled data. In Chapters 2 and 3, several techniques were
described for local dictionary composition relative to a single label. For
example, we could take all the basketball news stories in a collection
and create a dictionary solely from those news stories. Similarly, we
can compose a local dictionary for each cluster. The simplest approach
is to take the most frequent words and then remove the stopwords.
Alternatively, the words with the largest average tf-idf measures might
be used. Another approach might involve feature selection procedures
that select a relevant set of words from a larger set, either a global
dictionary or a large local dictionary. The main concept is to find words
that are representative of the cluster. The k-means clustering routine
in the accompanying software uses a scheme based on tf-idf measures
to describe each cluster using its most representative words. Instead
of relying completely on automated procedures, the human expert can

122 5. Finding Structure in a Document Collection

review the words generated by automated procedures and make a final
determination.
A label for a cluster can summarize very large numbers of docu-

ments. A cluster’s key words help give meaning to those labels. Because
clustering procedures process unlabeled data, we might be particularly
demanding in exploring the value of their results. Unlike data for typi-
cal numerical applications, our documents have meaning in their text.
Someone has carefully written and published a document. Why not
use one or more documents to characterize the cluster? The technical
problem is to find a small number of documents to serve as exemplars
for the much larger group of documents in a cluster. There are many
ways to do this. One simple approach is to select the document that
is most similar to the cluster mean vector. If the cluster spans a large
number of words, additional exemplars might be retrieved. In addi-
tion to comparing potential exemplars with the mean vector, a pair of
least similar documents might also be considered. The procedures for
selecting exemplars are far from perfect. We expect the documents in
a cluster to be similar. Thus, we should be able to select a few that
are "typical" documents. The human expert can read and review these
retrieved documents to understand the results of the clustering process
and to reach some decisions about their value.

5.4 Applications

We have presented clustering as the assignment of labels to doc-
uments. We saw this within the context of a problem with the
spreadsheet that we use to represent data for prediction—it was miss-
ing the last column, and nowwe have methods to compute and fill in the
last column. In that sense, our venture into clustering has been suc-
cessful. Labels are necessary for the application of prediction methods.
Clustering could have very wide applicability because it is often expen-
sive to get correct labels. Surely we would like to avoid that expense.
In practice, clustering is a weaker process than learning from labeled
data, and the expense is often justified by more accurate predictions.
Beyond assigning labels, clustering has natural capabilities that are

especially beneficial for exploratory analysis. The hierarchical methods
give structure to the data, producing a taxonomy that maps rela-
tionships among the documents. These are ways of summarizing and
organizing documents whose connections are poorly understood. The
problems reported to help desks are good examples of the potential

5.5 Evaluation of Performance 123

benefits of clustering. Document collections are digital libraries, and
we could make an analogy with a traditional paper-based library.
Clustering is a conceptual way to organize the library, placing related
books, such as mysteries, in a common location. In our case, the clus-
tering methods determine which books are related and also determine
the topics and hierarchical relationships among the topics. In a mod-
ern paper-based library, search by computer has somewhat eclipsed
the classical organization by topic. Users can search dynamically, and
when they find the right material, they just need a pointer to a shelf,
or even a robot, that will retrieve the selected item. One might argue
that, for many applications, clustering has also been eclipsed by search
engines that can dynamically find nearest neighbors and allow users
to interact and reformulate their queries.
One view of the benefits of clustering is the summarization of prop-

erties of a document collection. To the previous types of summaries, we
can add redundancy and frequency detection. Using similarity mea-
sures, it is easy to find repeats of documents. They match in every
word. By changing the threshold of matching words, documents that
are potentially very similar, such as a problem report on the same form
of breakdown, can be detected. That gives us the opportunity to count
the number of similar items in a cluster or perhaps delete documents
to eliminate redundancy.
Summaries of clusters are clearly of value in exploratory reviews of

document collections. Our main task is prediction. Although labels can
be generated by clustering, if they are not accurate, we cannot move
closer to reaching our primary goal. Next we look at evaluating the
results of clustering, which give clues to the overall success of both the
clustering and prediction efforts.

5.5 Evaluation of Performance

For prediction problems, evaluation is straightforward. The computed
answers are compared with the correct answers, and accuracy or error
rates are determined. If we want to be fair and unbiased, we hide doc-
uments and only at the very end test our methods and compare their
results with the correct answers. Clustering starts with unlabeled
data, and using the same approach to evaluation is not feasible.
Let’s not worry about projecting into the future. Let’s just consider

the quality of the clustering results. The concept of clustering is to put
similar documents in the same group. One way of evaluating whether

124 5. Finding Structure in a Document Collection

this has been achieved is to compute a cluster mean and its variance
or standard deviation. We can consider a deviation from the mean to
be a form of error and the standard deviation to be the typical error. If
documents within a cluster are similar, the variance of the mean will
be low. In Equations (5.8) the overall measure of variance for all docu-
ments is computed, where S(i) is the similarity result for document i,
and MS(i) is the average of the similarity measures for all documents
in the same cluster as document i. The variance can be computed over
all n documents in the collection to get a global indication of effective-
ness. It can also be computed for an individual cluster to determine its
performance and to compare it with other clusters.

Variance =
∑
i

S(i)−MS(i)2

n

Standard Deviation = Error =
√
Variance (5.8)

How is the similarity measure S(i) of a document computed? Similarity
is computed between a pair of documents. We have mentioned many
choices for similarity measures, any of which could be used in Equation
(5.8). For example, similarity can be computed using normalized tf-
idf and cosine similarity. For k-means, a comparison would be made
between each document vector and the mean vector. Alternatively, we
might simply count shared words. For k-means, each document would
be compared with the mean vector to see the number of shared words.
In Equation (5.8), S(i) is the number of words shared between docu-
ment i and the mean vector of its cluster, and the average of all S(i) in
the same cluster is MS(i). As was done in hierarchical clustering, S(i)
could be similarity between document i and its most similar document
in its cluster or its most dissimilar document. Whatever measures
are used to compute similarity, they are averaged and a variance is
computed. If we were using just simple shared word counts, then a
mean would indicate the average number of words shared between
documents. Error could be measured by the expected deviation from
this number. The error obtained by assigning all documents to the
same single cluster is the baseline measure which must be improved
greatly to demonstrate meaningful results.
Lurking in the background is the number of clusters and their size. It

would be very easy to specify a very large number of clusters, each con-
taining few documents. The variance computed for each cluster will be
low, but the usefulness of the cluster may also be poor. The tradeoff of
complexity and error is implicit in this process. Without correct labels,

5.5 Evaluation of Performance 125

Learning

Method

Cluster

Document
Classifier

Unlabeled
Spreadsheet

Labeled
Spreadsheet

Evaluate
Test Set

Train Set

Split

Figure 5.15. Prediction and Evaluation of Unlabeled Data

one has to have design goals and knowledge of the application. The
approximate number of clusters could be known, or an upper bound
on an acceptable variance might be declared so that a relatively small
number of clusters are selected.
These measures of clustering performance can be quite informative.

They summarize the overall quality of the clustering process and can
pinpoint clusters that differ in performance from others. Taken with
the other forms of summarization, such as key words and extracts,
the clustering results can help people make informed decisions and
interpretations. Although a fully automated process can be specified for
document clustering, it is wise to use knowledge to enhance the final
results. We all read and comprehend documents, so we can examine
the clustering results and evaluate the results on our own. One might
even make a suggestion, such as altering the number of clusters or the
measures of similarity to predict the automated process. One should
not dismiss subjective human evaluation.
Document clustering is very compatible with information retrieval

because it organizes a static collection of documents. Our task is pre-
diction, generalizing to new unseen documents. Can we predict and
then evaluate without labels? Figure 5.15 is an outline of how we might
accomplish this mission. Let’s look at the mechanics of prediction. We
have a spreadsheet of structured data. The clustering process has pro-
vided a column of labels, so our spreadsheet is now complete and ready
for the application of predictive learning methods. In Chapter 3, we
described the appropriate way to organize data for prediction. Separate
the data into train and test sets, which is typically done by assigning
the most recent documents to the test set. The learning methods are
applied to the training data, and the test data are used for evaluation.
Error analysis is the basis for evaluating various error rates. Recall
and precision can be measured. For the labels found by clustering, let
us perform those same forms of evaluation. It is true that the clus-

126 5. Finding Structure in a Document Collection

ter methods look at all of our data to assign labels. Our results for
prediction will be biased optimistically because the clustering methods
viewed both train and test data. We should accept that weakness and
move on. Evaluations showing strong performance might be somewhat
weaker than indicated, but evaluations showing weak performance will
surely be very weak.
Can we expect the labels assigned by clustering to lead to poor

prediction? Consider a situation where the true number of labels is
much larger than the results for the automated process. Clearly, the
predictions for these labels will be missed. Yet, the predictions on
the fewer classes could be good because many labels will fall into the
“other” category. At the opposite extreme, we could have too many
clusters, perhaps assigning only one document to each cluster. Then
the variance will look great, but a nearest-neighbors method would
have terrible results. To get good predictive results, both the cluster
and prediction methods must be successfully applied. That does not
guarantee that predictions are made for the most desirable outcomes.
Clustering is empirical, but it also projects with poetic license, having
the potential for going off in the wrong direction. However, if the labels
appear reasonable, then we may get some useful predictions without
the expense of human-assigned labels.

5.6 Historical and Bibliographical
Remarks

Clustering has been a topic of study in information retrieval for many
years. Rocchio’s method for clustering [Salton, 1971] bears a close re-
semblance to k-means. Instead of allocating the document set to k
bins, the Rocchio method picks k documents as exemplars and then
finds which of the remaining documents are “close to” the exemplars. A
special class is created for documents close to none of the exemplars. At
each iteration, the cluster centroids are recomputed and the documents
are reallocated until there is no longer any significant change in cluster
membership.
Clustering was first applied to both terms and documents, but ex-

periments with the SMART system did not show any advantage to
clustering terms, and this activity was more or less abandoned (but
see [Bekkerman et al., 2003]). The continued interest in clustering is
partly due to the cluster hypothesis: “the associations between docu-

5.6 Historical and Bibliographical Remarks 127

ments convey information about the relevance of documents to queries”
[Jardine and van Rijsbergen, 1971]. The question is, whether document
collections satisfy the cluster hypothesis. Answers to this question are
not entirely clear-cut [Voorhees, 1985]. Nonetheless, there has been
continued interest in clustering, particularly hierarchical agglomera-
tive clustering methods. A good review of this literature is in [Willett,
1988].
More recently, clustering has been applied to World Wide Web

searches. Queries to the Web often result in very many documents, and
it is hoped that organizing the voluminous output will make it more
useful [Dumais and Chen, 2000]. Another approach is based on the idea
that many Web searches are very general and exploratory. A method
for browsing these amorphous search results, called “scatter/gather,”
was proposed in [Cutting et al., 1992]. Search output is clustered, the
clusters are presented to a user, who selects a few clusters as inter-
esting, the documents in these clusters are reclustered, and the new,
presumably more specific clusters are presented again.
Finally, clustering has been used in studies of multidocument sum-

marization [Stein et al., 2000]. Each document is summarized, the
summaries are clustered, a passage from each cluster is selected for
the final summary, and the passages are reordered.
The statistical approach of clustering based on mixture models has

a long history. Although it is possible to use other optimization tech-
niques to solve mixture models, the most widely used method is the EM
algorithm due to its simplicity and intuitive statistical interpretation.
The method was first presented in full generality in [Dempster et al.,
1977]. It has since attracted enormous attention. Many works have
appeared both on the application side and on the theoretical analysis of
the method. In engineering applications, the EM algorithm has often
been used with Gaussian mixture models. However, in text processing,
it can be used with the multinomial naive Bayes model [Nigam et al.,
2000] since it is more natural to assume that each cluster generates
text through a naive Bayes model.
The technique of k-means clustering appeared in [MacQueen, 1967].

It has since been used widely in practice. It is also simpler to imple-
ment and computationally more efficient than the EM method. For
text clustering, a version of the k-means algorithm was studied in
[Dhillon and Modha, 2001]. Improvements to k-means are described
[Elkan, 2003]. Properties of the more general hard-clustering method
presented in Equation (5.7) were considered in [Kearns et al., 1997]. A

128 5. Finding Structure in a Document Collection

survey of statistical model-based clustering methods with experiments
on text data can be found in [Zhong and Ghosh, 2003]. Evaluation crite-
ria for document clustering methods and their application to prediction
are discussed in [Banerjee and Langford, 2004].

6

Looking for Information in
Documents

An important research area for natural language processing and text
mining is the extraction and formatting of information from unstruc-
tured text. One can think of the end goal of information extraction in
terms of filling templates codifying the extracted information. In this
chapter, we shall describe information extraction from this perspective
and some machine-learning methods that can be used to solve this
problem.

6.1 Goals of Information Extraction

Natural language text in digital form is a very important source of
information. Such information is presented in an unstructured format
that is not immediately suitable for automatic analysis by a computer.
We still are a long way from achieving complete computer understand-
ing of natural language text. However, computers can be used to sift
through a large amount of text and extract restricted forms of useful
information, which can be represented in a tabular format. Therefore,
information extraction can be regarded as a restricted form of full nat-
ural language understanding, where we know in advance what kind
of semantic information we are looking for. The main task is then to
extract parts of text to fill in slots in a predefined template.
We illustrate the concept of information extraction using examples

of identifying executive position changes. Every day there are many
news articles and announcements containing information on executive

130 6. Looking for Information in Documents

One of the many differences between Robert L. James, chairman and
chief executive officer of McCann-Erickson, and John J. Dooner, Jr., the
agency’s president and chief operating officer, is quite telling: Mr. James
enjoys sailboating, while Mr. Dooner owns a powerboat.

Now, Mr. James is preparing to sail into the sunset, and Mr. Dooner is
poised to rev up the engines to guide Interpublic Group’s McCann-Erickson
into the 21st century. Yesterday, McCann made official what had been
widely anticipated: Mr. James, 57 years old, is stepping down as chief
executive officer on July 1 and will retire as chairman at the end of the
year. He will be succeeded by Mr. Dooner, 45 ...

Figure 6.1. WSJ Text with Entity Mentions Emphasized by Italic Fonts

Table 6.1. Extracted Position Change Information

Organization McCann-Erickson
Position chief executive officer
Date July 1
Outgoing person name Robert L. James
Outgoing person age 57
Incoming person name John J. Dooner, Jr.
Incoming person age 45

position changes in different companies. Such information can be very
useful for business intelligence but is represented in an unstructured
form not suitable for automatic computer processing. For example, we
do not know where in the text to find a person or the organization
to which he or she belongs. In order to represent such information, a
computer program is needed to automatically annotate the text. Con-
sider the text given in Figure 6.1, where entities that we are interested
in are denoted by italic fonts. The text is taken from an article in The
Wall Street Journal on February 24, 1994, and the named entities were
annotated in the Sixth Message Understanding Conference (MUC-6).
The extracted information is represented in Table 6.1 and can be stored
in a relational database for additional processing and analysis.
The task of information extraction naturally decomposes into a se-

quence of processing steps, typically including tokenization, sentence
segmentation, part-of-speech assignment, named entity identification,
phrasal parsing, sentential parsing, semantic interpretation, discourse
interpretation, template filling, and merging. A general information
extraction system is illustrated in Figure 6.2. Although the most
accurate information extraction systems often involve handcrafted
language-processing modules, substantial progress has been made

6.1 Goals of Information Extraction 131

Fill Templates,
Create Structured Knowledge Base

Identify Information
Content

Report Generation

Linguistic
Processing

Unstructured
Text

Question Answering Analysis, Inferencing

Figure 6.2. Information Extraction System

Figure 6.3. Learnable Information Extraction System

in applying predictive machine-learning techniques to a number of
processes necessary for extracting information from text.
The application of machine-learning techniques to information

extraction is motivated by the time-consuming process needed to
handcraft these systems. They require special expertise in linguis-
tics and additional skills in artificial intelligence and computational
linguistics. This, coupled with the expectation that domain-specific in-
formation is required to build an accurate system, motivates research
and development of trainable information extraction systems.
The general architecture of a machine-learning-based information

extraction system is given in Figure 6.3. There are typically two main
modules involved in such a system. The purpose of the first module is to
annotate the text document and find portions of the text that interest
us. For example, in the first sentence of the text in Figure 6.1, we
want to identify the string Robert L. James as a person and the string
McCann-Erickson as an organization. Once such entity mentions are
extracted, another module is invoked to extract high-level information

132 6. Looking for Information in Documents

based on the entity mentions. In the example of Figure 6.1, we want
to identify that the person Robert L. James belongs to the organiza-
tion McCann-Erickson. This information is then filled into slots of a
predefined template.

6.2 Finding Patterns and Entities from
Text

Typical information extraction systems only partially parse the text
(i.e., chunk the text into typed phrases to the extent required to instan-
tiate the attributes of a template). The key rationale for this approach
is the assumption that, for a wide range of constrained applications,
the predefined attributes of templates and the semantic types of the
attribute values permit the system to make a reasonably accurate de-
termination of the roles of the various typed chunks identified by the
linguistic processors (named entity identifiers, noun phrase chunkers,
verbal group chunkers, etc.) without attempting a complete sentence
parse. The systems are typically organized as a cascade of linguistic
processors.
The first, and usually the most important, aspect of information

extraction is to find entity mentions from text. We shall describe the
machine-learning approach to this problem in greater detail.

6.2.1 Entity Extraction as Sequential Tagging
One way of looking at entity extraction is to annotate chunks of text
strings with some prespecified types. For example, we want to find
mentions of people, locations, and organizations in text. Our task
is to divide text into syntactically related nonoverlapping groups of
words (chunks). For example, the sentence One of the many differ-
ences between Robert L. James, chairman and chief executive officer of
McCann-Erickson, and John J. Dooner, Jr., the agency’s president and
chief operating officer, is quite telling ... can be annotated as follows:

One of the many differences between [PER Robert L.
James], [POS chairman and chief executive officer] of [ORG
McCann-Erickson], and [PER John J. Dooner, Jr.], the
agency’s [POS president and chief operating officer], is quite
telling ...

6.2 Finding Patterns and Entities from Text 133

One of the many differences between Robert L. James ,
O O O O O O B-PER I-PER I-PER O

chairman and chief executive officer of McCann-Erickson ,
B-POS I-POS I-POS I-POS I-POS O B-ORG O

and John J. Dooner , Jr. , ...
O B-PER I-PER I-PER I-PER I-PER O

Figure 6.4. Entity Detection by Sequential Tagging

In the example above, chunks that start with PER denote person,
chunks that start with POS denote position, and chunks that start with
ORG denote organization.
The most successful machine-learning-based approach to this task

regards the problem as a token-based tagging problem. The idea is
to divide text into tokens (words) and then assign each token a tag
value that encodes the chunking information. There are many different
encoding schemes. One commonly used method is to represent chunks
by the following three types of tags:

B-X: first word of a chunk of type X,

I-X: noninitial word in a chunk of type X,

O: word outside of any chunk.

As an example, the sentence considered before in this section can be
tokenized and annotated as shown in Figure 6.4.
One can now view entity detection as a sequential prediction prob-

lem, where we predict the class label associated with every token in a
sequence of tokens. In our case, each token is either a word or punctu-
ation in the text. The advantage of this approach is that the task now
becomes a simpler classification method, where the goal is to predict
the class label associated with every token. Therefore, methods used
for classification, such as those described in Chapter 3, can be applied.

6.2.2 Tag Prediction as Classification
In order to determine the label of a token, we create a feature vector
for this token. The label is then determined by the feature vectors. In
many statistical approaches, this requires us to estimate a conditional
probability model. We use x = [x1, . . . , xd] to denote a d-dimensional

134 6. Looking for Information in Documents

feature vector associated with a token and t to denote the tag value of
the token. The task is to estimate the conditional probability Pr(t|x);
that is, the odds of a token’s label being t if its associated feature
vector is x. We can then assign the token a label that has the largest
conditional probability score Pr(t|x).
If the number of possible labels and the number of feature values are

very small, then one can form a table of all possible feature values. At
each feature value, we compute the associated counts for every possible
tag value. Given a feature value, we then simply predict the class label
associated with the highest count. This approach does not work in
practice since, in order to obtain good performance, it is necessary to
use a very large set of features. Although we construct each feature to
capture a particular linguistic pattern that is expected to help solve the
problem, it is often quite difficult for us to tell how useful each feature
actually is. The learning algorithm should have the ability to utilize a
large set of features. The simple counting method fails for this purpose
for two reasons: it is computationally infeasible to store the large table
necessary for a large number of features, and we run into the so-called
data sparsity problem in that we do not observe enough data to obtain
accurate class label counts for each feature value.
A feature vector can be constructed in different ways. The most fre-

quently used feature-encoding scheme is binary encoding, where each
feature component takes a binary value: xj ∈ {0,1}. The value of xj = 0
means that the feature component is not active, and xj = 1 means that
the feature component is active. Therefore, each feature component can
be regarded as a test that asserts whether a certain pattern occurs or
not. As an example, we can use a feature component to test whether the
previous token is the word Professor, which is clearly a good indicator
of whether the current token is in the B-PERSON category or not. In
the binary-encoding scheme, the feature component is 1 (active) if the
previous word is Professor and is 0 (inactive) if it is not.
Note that restricting ourselves to binary encoding does not impose

any serious limitation. In fact, one may always encode a feature vector
with multivalued feature components into a binary-valued feature vec-
tor since we can simply introduce additional feature components in the
binary-valued feature vector, one for each multivalue that may occur.
Although we can use a large set of features (possible tests of patterns)
for information extraction, at any particular token, only a very small
subset of features are active. Therefore, an additional requirement for

6.2 Finding Patterns and Entities from Text 135

a desirable classification method is the ability to handle sparse data
efficiently.
The prediction methods described in Chapter 3 can be used for token-

based tagging problems. Similar to text categorization, linear models
are very successful for this task due to their ability to take advantage
of large feature sets. This means that the designer does not have to
worry about which feature is more important or more useful, and the
job is left to the learning algorithm to assign appropriate weights to the
corresponding feature components. A good learning algorithm should
learn a linear classifier such that the importance of each feature com-
ponent is reflected by its corresponding weight value. As mentioned in
Chapter 3, in this approach, nonlinearity can be explicitly captured by
sophisticated nonlinear features. For tagging problems, each feature
usually corresponds to a certain linguistic pattern that is predictive
for a certain class. We shall describe some useful features in greater
detail later.
Now assume that we are given a carefully constructed feature vector

x, and our goal is to determine whether the label associated with x is
t. In a linear model, we seek a weight vector wt and a bias bt such that
wt · x + bt < 0 if its label is not t and wt · x + bt ≥ 0 otherwise. In the
multiple label case, we compute the score st = wt ·x+bt for each possible
value t and assign the label to the value t with the largest score st. An
implementation of this is included in the accompanying software.
In Chapter 3, we described two methods that can be used to learn the

weight vector for such a linear decision rule. One is naive Bayes, which
is very simple and efficient but usually does not provide the best clas-
sification performance. The other method is a linear scoring method
based on minimizing a robust loss function, which we call RRM (robust
risk minimization). Both gave estimates of the conditional probability.
Although the RRM method works very well for information extrac-
tion, an alternative method, called maximum entropy, has historically
been used in the natural language processing literature. This method
is related both to RRM and to naive Bayes but is computationally
more expensive. Due to its importance in the information extraction
literature, we shall describe it in detail.

6.2.3 The Maximum Entropy Method
Recall that in naive Bayes, we make the very simple assumption that,
for each class t, each feature component is generated independently.
Mathematically, Equation (6.1) describes this probability model, where

136 6. Looking for Information in Documents

Pr(xj = 1|label = t) = ew
t
j/(1+ew

t
j) and Pr(xj = 0|label = t) = 1/(1+ew

t
j).

Pr(x|t) =
d∏

j=1

Pr(xj|t) =
exp(wt · x)∏d
j=1(1 + ew

t
j)

. (6.1)

Let c(wt) =
∏d

j=1(1 + ew
tj

) and bt = lnPr(t) − ln c(wt), then we have
the following equation Pr(x) =

∑
t Pr(t)Pr(x|t) =

∑
t exp(wt · x + bt).

Using the Bayes rule, Equation (6.2) expresses the conditional class
probability

Pr(t|x) = Pr(t)Pr(x|t)/Pr(x) =
exp(wt · x + bt)∑
t′ exp(wt′ · x + bt′)

. (6.2)

Since Pr(x) is independent of the class label t, we may assign each
token with feature x a label t that has the largest score st = wt · x + bt.
A major disadvantage of naive Bayes is that the conditional inde-

pendence assumption in Equation (6.1) is often too strong. This can
be remedied by the maximum entropy (MaxEnt) method, which is
one of the most popular and successful methods in natural language
processing.
Observe that for classification problems we are interested in esti-

mating the conditional probability Pr(t|x). The naive Bayes approach
models the data probability Pr(x|t) for each class, which induces a
conditional probability as in Equation (6.2). In the literature, a clas-
sification method that models the class data probability Pr(x|t) is often
called a generative model, while a method that directly models the con-
dition probability Pr(t|x) is often called a discriminative model. Since
x is often of very large dimensionality, it is usually much more difficult
to have a good data model Pr(x|t) than a good conditional class prob-
ability model Pr(t|x). Therefore, the discriminative modeling approach
in general outperforms the generative modeling approach.
The naive Bayes method can be considered as a method of estimating

a conditional probability model of Equation (6.2), but relies on the un-
realistic independence assumption in Equation (6.1). For a generative
modeling approach such as naive Bayes, this kind of simplification is
always necessary in order to prevent the data sparsity problem we
mentioned earlier. It reflects the fact that estimating Pr(x|t) is often
more difficult than estimating Pr(t|x) directly. Therefore, a simplifi-
cation is required in the more difficult problem of estimating Pr(x|t),
which leads to the relatively poor performance of naive Bayes.
The discussion above suggests that an immediate improvement of

naive Bayes is to find weight vectorswt that directly estimate the condi-

6.2 Finding Patterns and Entities from Text 137

tional probability model Pr(t|x) of Equation (6.2) without going through
the naive Bayes data model. A direct conditional probability model of
Equation (6.2) is often referred to as maximum entropy (MaxEnt) in
computational linguistics. This is because an exponential model of this
form can be obtained from the so-called maximum entropy principle.
This particular relationship isn’t important for our purposes, and thus
we shall not explore it here. The same conditional model has also been
widely used in statistics, and is often called (multicategory) logistic
regression.
A significant advantage of the maximum entropy model over the

naive Bayes model is that we do not need to have any independence
assumption for the component of the features. Since we directly model
Pr(t|x), how the feature x is generated becomes irrelevant. Therefore,
the model in Equation (6.2) does not make any assumption on how
each component of x is generated. This also indicates that in MaxEnt
modeling we only need to focus on creating features that are most
useful for the problem, without worrying whether different features
are redundant.
Assume that we are given the training data (x1, t1), . . . , (xn, tn).

The most commonly used method to estimate the weight vector in
Equation (6.2) is through the maximum-likelihood estimate, which
picks the weight vector to maximize the observed conditional proba-
bility

∏n
i=1 Pr(t

i|xi). Mathematically, the method is equivalent to the
minimization of

min
n∑

i=1

[
−(wti · xi + bti) + ln

K∑
t=1

exp(wt · xi + bt)

]
. (6.3)

The method above is similar to the RRM method described in Chap-
ter 3 in that both seek weight vectors by minimizing loss functions
averaged over the training data. The main difference is that they
minimize different loss functions. In practice, performance of the
classifier obtained is not very sensitive to different choices of loss func-
tions. However, some formulations are numerically easier to solve than
others.
One can observe that the model in Equation (6.2) is unchanged when

each weightwt is increased by a constant vector. Therefore, the solution
of Equation (6.3) is not uniquely determined. One method to avoid this
difficulty is to impose a constraint such as

∑
t w

t = 0 (and
∑

t b
t = 0).

This is especially convenient for binary problems, where the the labels
take two values {±1}. Another method of resolving this difficulty is
to use regularization, such as what we have employed for the RRM

138 6. Looking for Information in Documents

method described in Chapter 3. However, practitioners of the MaxEnt
model often are satisfied with finding any one of the possible solutions.
A popular method for doing so is the so-called generalized iterative
scaling (GIS) method.
Before describing the algorithm, we shall rewrite MaxEnt in a

slightly different form. Consider weight vectors w1, . . . ,wK and train-
ing data x1, . . . , xn. For each i = 1, . . . ,n and t = 1, . . . ,K, denote by xi,t a
(d+1)K dimensional vector, where its components from (d+1)(t−1)+1
to (d + 1)t − 1 are given by the corresponding components of xi; its
(d + 1)t-th component is 1; and its other components are filled with
zeros. That is, each xi,t has a form xi,t = [0, . . . ,0, xi,1,0, . . . ,0]. We also
let w be a (d + 1)K dimensional vector, where for each t = 1, . . . ,K,
its components from (d + 1)(t − 1) + 1 to (d + 1)t − 1 is given by the
corresponding components of wt, and its component (d + 1)t is given
by bt. That is, w has the form w = [w1,b1,w2,b2, . . . ,wK ,bK]. Using
the notations above, the linear score wt · xi + bt can be rewritten as:
wt · xi + bt = w · xi,t. Therefore, the model in Equation (6.2) can be
regarded as a special case of the following slightly more general model,
which often appears in the computational linguistics literature:

Pr(t|xi) =
exp(w · xi,t)∑
t′ exp(w · xi,t′).

The maximum-likelihood estimate in Equation (6.3) can now be
rewritten as

min
n∑

i=1

[
−w · xi,ti + ln

K∑
t=1

exp(w · xi,t)

]
. (6.4)

We now describe the GIS algorithm that solves Equation (6.4). The al-
gorithm is shown in Figure 6.5. We use wj to denote the j-th component
of w and xi,t

j to denote the j-th component of xi,t. We also assume that
each xi,t

j is binary (0 or 1).
In GIS, ri,t maintains the current sum w · xi,t. The quantity qj is the

observed frequency of the j-th feature, and pj is the expected frequency
of the j-th feature under the maximum entropy model (with the current
weight vector w). From the update rule of Δwj, we can see that, if
qj > pj, then wj is increased, which has the effect of increasing the
expected frequency pj in the next iteration. Similarly, if qj < pj, then wj

is decreased, which has an effect of decreasing the expected pj in the
next iteration. Therefore, GIS tries to update the weight vector so that
the expected frequency pj becomes closer to the observed frequency qj.
It can be shown that pj converges to qj eventually. Note that a weight

6.2 Finding Patterns and Entities from Text 139

Let w = 0
Let ri,t = 0 (i = 1, . . . ,n, t = 1, . . . ,K)

Let qj =
∑n

i=1 x
i,ti
j (j = 1, . . . , (d + 1)K)

Let q = maxi,t
∑(d+1)K

j=1 xi,t
j

iterate
pj = 0 (j = 1, . . . , (d + 1)K)
for i = 1, . . . ,n do
zi =

∑K
t=1 exp(ri,t)

pj = pj +
∑K

t=1 x
i,t
j exp(ri,t)/zi (j = 1, . . . , (d + 1)K)

end for
for j = 1, . . . , (d + 1)K do

Δwj = 1
q ln

qj
pj

wj = wj + Δwj

ri,t = ri,t + xi,t
j Δwj (i = 1, . . . ,n)

end for
until convergence

Figure 6.5. The GIS Algorithm

vector is the solution of Equation (6.4) when pj = qj. This can be seen
by setting the derivative with respect to each wj to zero in Equation
(6.4).
Assume that we train a named entity recognition model using only

tokens in a window of size ±2. Table 6.2 shows an example of computed
weights associated for some tokens with their positions relative to the
current token. With these weights, consider the following sentence seg-
ment: Russian Prime Minister Mikhail Kasyanov said on Monday . . . ,
and let us try to determine the label for word Mikhail. Although nei-
ther Mikhail nor Kasyanov appeared in the training data, the tagger
correctly classified the tag associated with Mikhail to be B-PER based
on the context. In this example, the score for B-PER can be computed
as follows: 1.4 (Prime@−2) +4.4 (Minister@−1) +0.87 (said@2) −4.6
(b) = 2.1. We use the notation WORD@RELPOS to indicate that the
feature associated with the token WORD at the relative token position
RELPOS (with respect to the current token) is active.
Once weight vectors are computed, the classification rule for each

feature vector x is the label t associated with the largest score st =
wt · x + bt. Although MaxEnt works well in practice, the GIS method

140 6. Looking for Information in Documents

Table 6.2. Examples of Linear Weights for Named Entity Recognition

B-PER
b = −4.6

Word Token Position Weight
President −1 5.0
Clinton 0 4.5

. . .
Minister −1 4.4

. . .
Prime −2 1.4

. . .
said 2 0.87

. . .

B-ORG
b = −5.0

Word Token Position Weight
Reuters 0 5.2
U.N. 0 4.8

. . .
Corp. 2 4.0

. . .
joined −1 3.1

. . .

B-LOC
b = −5.2

Word Token Position Weight
U.S. 0 5.7
Israel 0 5.7

. . .
capital −1 3.4
southern −1 2.5

. . .

converges much more slowly than the algorithm for RRM described in
Chapter 3.

6.2.4 Linguistic Features and Encoding
Strong learning algorithms are very helpful, but in order to build a
successful information extraction system, it is essential to use good
features that can characterize the application. We shall describe such
features in this section.
Although there are specific features that are problem-dependent,

some local contextual features are useful for most entity extraction

6.2 Finding Patterns and Entities from Text 141

tasks. We shall describe a few types of features below. Consider a
sequence of tokens . . . , tok−2, tok−1, tok0, tok1, tok2, Assume that we
have assigned class labels ti for each token toki (i < 0), and we are
examining the current token tok0.

• Tokens within a window (typical window size is two tokens to
the left and right of the current token): These features provide
contextual linguistic information that is useful for determining
the class to which entity the current token belongs.

• Previously assigned class labels (typically the previous two la-
bels): Since certain label sequences are more likely to happen
than other label sequences (and some sequences are prohibited),
these features capture some information on the interdependency
of the label sequence.

• Token-based annotations from existing linguistic processing mod-
ules: for example, the part of speech of the token or whether
a token sequence matches a certain linguistic pattern. Any
additional linguistic annotation can be regarded as a feature.
However, the following specific features are relatively simple and
often very useful:

– Token type features: Semantic or syntactic type information
can provide useful information; for example, whether the
token is capitalized, whether the token denotes a number,
or whether it is in a specific semantic class.

– Character-based token features: These are character subse-
quences inside a token, such as a prefix or suffix up to a
certain length. These features capture the composition of the
word, which often yields useful information on its semantic
class. For example, for named entity recognition, one can
sometimes guess whether a word is a person name by simply
looking at its character composition, even though one has not
seen the word before.

– Dictionary features: This feature determines whether a
token phrase belongs to a certain prebuilt dictionary or not.

• High-order conjunction of basic features: These are occurrence
features. For example, instead of taking token tok−1 and tok0 as
separate features, we may use their conjunction, which is essen-
tially the token phrase {tok−1, tok0}. As another example, instead
of features expressing whether a token belongs to a first-name-
dictionary FD or a last-name-dictionary LD, we may create a

142 6. Looking for Information in Documents

Token Sequence: EU rejects German call to boycott British lamb .
Feature Type Nonzero Features for German

Previous two labels Tok− 2 is labeled I-ORG
Tok− 1 is labeled O

Initial capitalizations Current token starts with a capital letter
in window of ±2 Tok− 2 starts with a capital letter
All capitalizations in window of ±2 Tok− 2 is all capitalized
Prefix strings of length ≤ 4 G
of current token Ge

Ger
Germ

Suffix strings of length ≤ 4 rman
of current token man

an
n

Positional tokens in German at position 0
window of ±2 call at position +1

to at position +2
rejects at position −1
EU at position −2

Figure 6.6. Tokens to Feature Vectors

conjunction feature that checks whether tok0 belongs to FD and
tok1 belongs to LD.

For each data point (corresponding to the current token tok0), the
associated features are encoded as a binary vector x, which is the
input to the machine-learning algorithm. Each component of x corre-
sponds to a possible feature value v of a feature f such as described
above. The value of the component corresponds to a test that has value
one if the corresponding feature achieves value v or value zero if the
corresponding feature achieves another feature value.
For example, since tok0 is in our feature list, each possible word value

v of tok0 corresponds to a component of x: the component has value one
if tok0 = v (the feature value represented by the component is active)
and value zero otherwise. Similarly, for a second-order feature in our
feature list such as [tok−1, tok0], each possible value [v−1, v0] in the set
of all observed two-token phrases (in the training set) is represented
by a component of x: the component has value one if tok−1 = v−1 and
tok0 = v0 (the feature value represented by the component is active),
and value zero otherwise. The same encoding is applied to other fea-
tures, with each possible test of “feature = feature value” corresponding
to a unique component in x.

6.2 Finding Patterns and Entities from Text 143

Clearly, in this representation, the high-order features are conjunc-
tion features that become active when all of their components are
active. In principle, one might also consider disjunction features that
become active when some of their components are active. Note that
the representation above leads to a sparse but very high-dimensional
vector. As we mentioned earlier, this requires the learning algorithm
to have the ability to take advantage of large features and the sparse
vector representation. For high-order features, the possible set of fea-
ture values can be very large. One way to alleviate a potential memory
problem is to use a hash table. This approach works because, despite
the high dimensionality of the feature space, most of these dimensions
are empty.
Figure 6.6 illustrates how a feature vector is generated for the token

German. In this example, a window size of five tokens, with the current
token in the center, is used. Token positions are relative to the current
token. Note that the features also encode positional information: “to at
position +1” is a different feature from “to at position +2.”

6.2.5 Sequential Probability Model
Although it is possible to obtain good performance by separately pre-
dicting the label associated with each token, it is often better to take
advantage of the interdependency among the label sequences, and
jointly maximize the most likely label sequence. This can be achieved
by sequential probability modeling and dynamic programming.
We shall briefly describe the idea without going into the technical

details. Note that, in our model, the feature vector xi can depend on
the previous c class labels ti−1, . . . , ti−c. Therefore, we can write the
conditional probability as:

Pr(ti|xi) = Pr(ti|xi, ti−1, . . . , ti−c).

Instead of finding ti one by one sequentially from i = 0,1, . . ., we may
find the label sequence {ti} that maximizes∏

i

Pr(ti|xi, ti−1, . . . , ti−c).

To obtain the exact solution, one usually requires dynamic program-
ming. However, one may also do so approximately. Instead of keeping
just one sequence {ti} at each point, one may keep the top-k sequences
{ti} ranked by the joint probability seen so far. When predicting the
current label, we use all the top-k sequences. We then rerank the new

144 6. Looking for Information in Documents

• Tokenize the text.

• Create a feature vector for each token.

• In training:

– Encode the entities as a label sequence aligned with tokens.
– Create (token feature, token label) training pairs.
– Use a learning algorithm to learn a rule that can output the

probability of token label conditioned on token feature.

• In decoding:

– Find label sequence that approximately maximizes the joint
conditional probability.

– Translate labels back into extracted entities.

Figure 6.7. Sequential Tagging-Based Entity Extraction

sequence with the current label included and then only keep the top-
k label sequences. We continue this process until finishing the last
token. Then we output the top-ranked label sequence as the final pre-
diction. The sequential tagging-based entity extraction is summarized
in Figure 6.7.
To see how this works, we shall illustrate the idea by a very sim-

ple example in Table 6.3. Assume that we encounter the phrase New
Mexico State University in the named entity recognition task. For sim-
plicity, we assume that the features we use for each token are merely
the previous, the current, and the next token, as well as the label of
the previous token. The rows of the table are the stages in the decoding
process where we look at each token from left to right one by one. The
token currently under examination is listed in the first column. The
top two choices of probable labels are listed in the remaining columns,
where we use the format of first choice/second choice.
When we start with the first token, New, the classifier can deduce

based on its right context that its label is mostly likely to be B-LOC
but also possibly B-ORG. If a decision is to be made immediately, the
classifier will choose the incorrect label B-LOC since it is more likely.
However, in the decoding stage, we will keep both choices and delay
the final decision to a later stage when we can be more confident about
the correct label. After we process the token Mexico and see the token
State, we immediately deduce that its label should be B-ORG or I-ORG
due to the right context of University. Since an ORG label is much
more likely to follow an ORG label than an LOC label, the decoder
can determine that the label sequence B-ORG I-ORG I-ORG for New

6.3 Coreference and Relationship Extraction 145

Table 6.3. Decoding Example

Current
Token New Mexico State University
New B-LOC/B-ORG ?

Mexico B-LOC/B-ORG I-LOC/I-ORG ?
State B-ORG/B-LOC I-ORG/I-LOC I-ORG/B-ORG ?

University B-ORG/B-LOC I-ORG/I-LOC I-ORG/B-ORG I-ORG/B-ORG

Mexico State has a higher probability than B-LOC I-LOC B-ORG. This
change is reflected in the fourth row of Table 6.3. Proceeding in this
way, after seeing the last token, University, we are able to obtain the
correct label sequence.

6.3 Coreference and Relationship
Extraction

After entity extraction, another useful module in an information ex-
traction system is coreference resolution and relationship extraction.
Both work with the extracted entities. In coreference resolution, the
purpose is to determine whether different extracted entity mentions
refer to the same underlying entity. The relationship extraction module
determines whether two (or more) entities have a certain prespecified
relationship. Coreference resolution may also be treated as a special
case of relationship extraction if we regard it as determining whether
two entity mentions are identical. We give an overview of learning-
based methods for these tasks. However, they are not included in the
accompanying software.

6.3.1 Coreference Resolution
The main goal of coreference resolution is to group together different
mentions of the same underlying entities. For example, the person
Robert L. James may be referred to as James later. We want to spec-
ify that they refer to the same person and group these two entities
together. A person may also be referred to by a pronoun later. For
example, Robert L. James can be referred to as he later. Therefore, in
coreference resolution, we would like to group them together as well.
Coreference resolution is very useful because by grouping different

mentions of the same underlying entity, we can merge information

146 6. Looking for Information in Documents

obtained on this entity from different sources. Coreference can be
performed either within one single document or across multiple docu-
ments. Cross-document coreference resolution is usually more difficult
since the name Robert L. James can refer to different people. Here we
confine ourselves to within-document coreference resolution.
Not surprisingly, the most useful information for coreference reso-

lution is string matching. A few simple rules can do fairly well: we
group entities with identical strings together; we group pronouns with
the previous extracted entity. One can also extend the rules above by
adding a few more rules, such as group a full name person entity with
same last name person entities, and group a full name organization
entity to its initial abbreviation organization entities, etc.
We can use a machine-learning information extraction system to

improve rule-based coreference resolution. Rules such as those de-
scribed above can be used as features of the learning system. The
main machine-learning approach to coreference resolution is to reduce
the problem into decision steps consisting of determining whether two
entities belong to the same group or not. In this approach, the learning
problem becomes a binary classification problem that can be handled
by methods we described earlier.
If all of the binary decisions from the learning algorithm are per-

fect, then one can simply link every two entities that are classified to
be in the same group. However, in reality, decisions from the learn-
ing algorithm are not perfect. For example, we may encounter the
situation that A and B are classified to be in the same group and
A and C are classified to be in the same group, but B and C are
not classified to be in the same group. Such conflicts can be resolved
by using heuristics, which intuitively group the entities into clusters
such that pairwise connection within each cluster is strong, and pair-
wise connection between the clusters is weak. Naturally, the grouping
heuristics correspond to various clustering methods.
As an example, a relatively simple sequential greedy grouping algo-

rithm works as follows. We go through entities one by one from the
beginning of documents and form partial entity groups at each point.
At each step, we use the learned classifier to determine the probability
of the current entity belonging to the same group of every previous
entity. We then compute an averaged probability score for each group
and pick the group with the largest average score. If the largest score is
larger than a threshold, then we assign the current entity to the group

6.3 Coreference and Relationship Extraction 147

Named Entity Mentions:
M1 M2 M3 M4

Loewen Group Inc it ORG Service Corp International Loewen

M1 M2 M3 M4
M1 - 0.7 −1.0 0.9
M2 0.7 - −0.2 −0.3
M3 −1.0 −0.2 - −1.0
M4 0.9 −0.3 −1.0 -

Figure 6.8. Coreference Named Entity Mentions Pairwise Scores

that is picked; otherwise, we create a new group with the current entity
alone.
To see how the procedure described above works on a concrete

example, we consider the following sentence, which contains three
occurrences of organizations and one pronoun (see Figure 6.8).

[ORG Loewen Group Inc] said on Monday that [PRONOUN
it] has signed or closed acquisitions totaling US $325million
since rival [ORG Service Corp International] launched a
hostile bid for [ORG Loewen] earlier this year.

We want to group the four entity mentions in Figure 6.8 into clusters.
In the pairwise approach, we first compute scores for each pair of these
four mentions as listed in Figure 6.8. The scores can be obtained using
a binary classifier such as the RRM method or logistic regression. A
positive score means the pair is likely to belong to the same group, a
score close to zero means not sure, and a negative score means the pair
is likely to belong to different groups. The score of a pair that involves a
pronoun is usually more difficult to estimate since this usually requires
information from the sentence structure, instead of string matching
alone. This difficulty is reflected in Figure 6.8, where the pairwise
scores s(M2,M3) and s(M2,M4) are relatively low and uncertain.
Given the scores in Figure 6.8, we can invoke the greedy clustering

scheme with a threshold of, say, zero. We start with M1 as a single
cluster E1. In the next step, we examine M2. Since s(M1,M2) > 0,
we put M2 into the cluster E1. We then examine M3. Since it has a
negative score both with M1 and with M2, we determine that it does
not belong to E1. We thus create a new cluster E2 that contains M3
only. Finally, we examine M4. We know it does not belong to E2 since
s(M3,M4) < 0. Although it is not sure whether M2 and M4 should
belong to the same cluster (and s(M2,M3) takes a default value of

148 6. Looking for Information in Documents

no), there is strong evidence that M1 and M4 belong to the same
cluster since they share the same partial string Loewen. Therefore, the
averaged score is greater than zero, and we put M4 into the cluster E1.

The most important feature for determining the score of a pairwise
connection in coreference resolution is string matching (and partial
string matching). As we have mentioned above, if we have manually
developed rules for coreference resolution, then they can also be used as
features. A number of other features are also very useful, such as part-
of-speech information, the syntactic head of the entity, the distance
between entities, and entity type information (people, organization,
location, etc.).

6.3.2 Relationship Extraction
Although relationships can exist among entities that are not in the
same sentence, those long-range relationships usually require seman-
tic inference. The relation extraction module in a typical information
extraction system often is constrained to relationships among enti-
ties in a single sentence. Such relational information can be directly
obtained from the syntactic structure of the sentence.
The most interesting relationships are often binary relations. For

example, consider the first sentence in Figure 6.1, where we have a
relationship that the person Robert L. James belongs to organization
McCann-Erickson. A binary relationship takes two typed entities as
arguments. In the example above, we have a belong-to relationship
that takes its first argument as a person and its second argument as
an organization. In this case, the order of the arguments is not inter-
changeable. Some binary relationships may also take interchangeable
arguments.
Learning binary relations among entities within a sentence can be

posed as a binary classification problem. For each pair of entities in
a sentence, we determine whether they have a certain predefined re-
lationship or not. In many cases, one may manually write rules to
match certain predefined parse structures for specific relationships.
Such rules can also be used as features for a machine-learning sys-
tem. Predictive methods for relationship extraction can also take other
features. A very important feature is the syntactic parse tree of the
sentence. One may decompose a tree into subtrees that can be encoded
as features. Each of these features should also contain its relative
positional information with respect to the entities.

6.4 Template Filling and Database Construction 149

Consider the following sentence, with named entities extracted.
There are three entities, and we are trying to determine binary re-
lations between each pair of them. In this example, we will focus on
relations between people and thus ignore the DATE entity.

[PER Jon Smith] met [PERMary Jones] on [DATE Sept. 17].

Assume that we obtain the following parse of the sentence, where each
word is supplemented with its normalization.

[SUB [PER Jon/jon Smith/smith/]]
[VG met/meet]
[OBJ [PER Mary/mary Jones/jones]

[PP on/on [DATE Sept./Sept. 17/integer]]]

We can extract the following pattern from the tree, where we use the
dash symbol – to denote words that can be skipped.

[SUB – PERSON1 –] [VG – –/meet –] [OBJ – PERSON2 –]

This simplified tree pattern can be used as a feature for the learning
algorithm, which will then learn from the training data that a pat-
tern of this type implies a relationship of meet between PERSON1 and
PERSON2.

6.4 Template Filling and Database
Construction

In general, a template is a more complicated structure than a binary
relationship. A binary relationship contains two typed entity slots to
fill, while a template may contain more than two slots, which can be or-
ganized into a semantically meaningful group. In addition, in order to
fill slots in a template, we may need to go through the entire document
rather than only a single sentence as in the case of within-sentence
binary relation extraction.
An example of a template is an event, which specifies a certain occur-

rence associated with entities at a specific time and place. For example,
a person meeting another person can be considered a meet event. In
this case, the template has the following slots: people involved in the
meeting, the location of the meeting, and the time of the meeting. This
structure is more complex than one that regards meet as a relation
between two persons, as in the example we used in the previous section.

150 6. Looking for Information in Documents

From that example, we can also note that the location of the meeting
is not specified in the sentence.
Therefore, for template filling, some slots can be missing since it is

possible that they are not specified in the text. In addition, slots in a
certain template can be specified in different sentences. In such a case,
we need to identify whether two sentences refer to the same template
and then fill the template accordingly. This problem is similar to named
entity coreference resolution but is often more complicated.
The traditional information extraction literature mainly focuses on

problems where the whole article deals with only a single template.
Often a slot of the template can be identified with a particular en-
tity type. For example, consider extracting information from seminar
announcements, where we want to know the speaker, talk title, time,
and location. The slots are extracted from an article, and each can be
associated with a different entity type. Therefore, once we extract the
entity types, the template can be easily filled using a simple rule that
fills each slot with the corresponding entity extracted from the text.
Consider the following short seminar announcement.

Dr. Jon Smith from the IBM text analysis group will
present a seminar entitled “The future of predictive text-
mining” on Tuesday, Sept. 2nd from 11:00am–12:00am in
the auditorium.

Wemay create entity types SPEAKER (the speaker), ORGANIZATION
(where the speaker is from), TITLE (the title of the talk), DATE and
TIME (date and time of the talk), and LOCATION (the place of the
talk). The announcement can then be tokenized and annotated using a
named entity recognizer as:

Dr. [SPEAKER Jon Smith] from the [ORGANIZATION
IBM text analysis group] will present a seminar entitled “
[TITLE The future of predictive text-mining] ” on [DATE
Tuesday, Sept. 2] from [TIME 11:00am–12:00am] in the
[LOCATION auditorium].

The desired template can be easily filled from the annotation above.

6.5 Applications 151

6.5 Applications

6.5.1 Information Retrieval
One interesting application of information extraction is automated ci-
tation analysis for academic papers. A notable example is the Citeseer
search engine. The underlying idea is to crawl academic sites and
gather papers in a specific field. Then, by using information extraction
technology, one can extract information such as a paper’s title, author,
abstract, and bibliography list, as well as the context in which citations
are made. Further statistical and linkage analysis can then be applied
on the extracted information and provided as feedback to the users.
Another application of entity detection is natural language question

answering. Assume we ask the question: How far is it from Los An-
geles to San Francisco? The system answers 382 miles, based on the
following sentence from its database: The distance between Los Angeles
and San Francisco is 382 miles. A question-answering system classifies
questions into various types and preprocesses its database to extract
entities marked with appropriately defined answer types that corre-
spond to different question types. In the example above, Los Angeles
and San Francisco will be marked as entities of city type, and 382
miles will be marked as an entity of distance (or measure) type. From
the question, the system first determines that the answer should be
a distance between two places called Los Angeles and San Francisco.
These places are then matched with sentences in the database, and
then the entity of distance type 382 miles is extracted as the answer.

6.5.2 Commercial Extraction Systems
A number of small companies each have a fraction of the market for off-
the-shelf named entity extraction systems. Let us briefly look at three
of them.

IdentiFinder is an incarnation of longstanding work in the area
by Bolt, Beranek and Newman (BBN). IdentiFinder uses a Hidden
Markov model to recognize entities. Each word in a text is labeled with
one of the desired class names or with Not-A-Name. Separate bigram
probabilities are generated for each type of entity. Statistical models of
this kind require substantial training data.

NetOwl is an outgrowth of work by SRA, Inc., on a system originally
called NameTag. SRA founded IsoQuest to market NetOwl. The Net-
Owl extractor goes beyond the extraction of names to events connecting

152 6. Looking for Information in Documents

people and organizations to items such as weapons of mass destruction.
A particular instance of NetOwl is created by writing a set of declara-
tive data files that contain the task-specific content. These are compiled
into a configuration file that is read by the extraction engine. The ex-
traction engine, in consequence, is completely application-independent.
Actual name identification is accomplished by hand-crafted rules and
dictionaries.
ClearForest is an Israeli company that has made a number of sales

to American corporations and government agencies. Its software scans
text and tags items of interest for display to the customer. The tagging
portion uses semantic, statistical, and structural clues to classify doc-
uments and extract entities and relationships. An application called
ClearResearch organizes and presents the extracted data. A recent
module, Link Analysis, finds indirect links between entities. The ex-
traction module is based on “rulebooks,” handwritten rules specific
to an application or customer. A set of prewritten rulebooks is avail-
able for life sciences, counterintelligence, intellectual property, and
financial services.

6.5.3 Criminal Justice
Two prototype applications in the area of criminal justice have been
described in the open literature. One was sponsored by the U.S.
Department of Justice’s National Law Enforcement and Corrections
Technology Center. The project involved scanning documents seized in
raids and converting them to computer text files using optical character
recognition. The structured information (people, places, organizations)
from these papers is then entered into a database where standard
visualization and analysis tools can be used. The project was designed
to investigate named entity extraction for structuring. It used the com-
mercial package IdentiFinder to extract entities in a money-laundering
case. The final report included a list of what would be needed to put
such a system into production.
In a similar project, the University of Arizona tested its neural-

network-based extraction system on police narrative reports from the
Phoenix Police Department dealing with narcotics crime cases. In this
case, the entities were person, address, vehicle, drug, and personal
property. The named entity tagger did well on person (precision 0.741,
recall 0.739) and drug (precision 0.854, recall 0.779) and less well on
address (precision 0.596, recall 0.574) and personal property (precision
0.488, recall 0.478). It was hypothesized that performance on addresses

6.5 Applications 153

could be greatly improved, but identifying personal property entities
was inherently hard.
On the boundary between military and criminal applications is a

project called the Automated Counterdrug Database Update (ACDBU)
program. It was established by the Joint InterAgency Task Force on
drug interdiction. The goal is to streamline and automate counter-
drug and maritime tracking operations. The program is capable of
extracting data from all military intelligence formats as well as from
ordinary text. Example entities extracted are names, locations, dates,
and money values. The underlying software is IdentiFinder. Recogni-
tion rules are automatically trained rather than being handwritten
finite-state rules.

6.5.4 Intelligence
Application of named entity tagging and information extraction for
problems in military intelligence and homeland security should not
be surprising since much of this research has been funded by the
Defense Department. One prominent contractor to the military and
to Homeland Security is Inxight Software Inc., a spinoff from Xe-
rox Corporation to capitalize on 20 years of linguistic and artificial
intelligence work by its Palo Alto Research Center. According to a
February 2003 press release, “using Inxight software, intelligence an-
alysts might locate previously unknown people associating with known
terrorists/criminals or known terrorist/criminal organizations.” The
software is used to process hundreds of messages per day (intelligence
reports, e-mails, news articles, Web pages) to look for these links. In
some cases, a simple listing of the entities occurring in a document
allows analysts to find documents of interest simply by looking at the
list rather than reading the whole document. The software supports
multiple languages, including Arabic.
This kind of software is deemed so important that the CIA has

established a venture capital firm (In-Q-Tel Technologies) to support
small companies working in the area. One example is a company called
Attensity, whose software extracts common threads of information out
of documents. Another example is Systems Research and Development
(SRD), which specializes in link analysis using a software package
called NORA (Non-Obvious Relationship Awareness) that traces links
across data banks between entities such as people, places, and organi-
zations. This software was originally developed for use by Las Vegas
casinos to spot cheaters and card counters by tracing links between

154 6. Looking for Information in Documents

individuals and earlier transactions. For example, it might tell a casino
that a job applicant once had the same address as a known criminal.
Although a detailed description of the application is not available,

the FBI has purchased ClearForest products in its counterterrorism
data system, comprising over a billion documents, with up to 1000
new documents each month. It is available on the desktops of all its
analysts, delivering visual, interactive summaries.
Named entity extractors can certainly have uses other than in intelli-

gence and criminal justice. One prototype system is designed to extract
entities from Thai agricultural documents to improve information re-
trieval. Another project, in Europe, is intended to extract information
in English, Greek, French, and Italian from Web pages to facilitate
product comparisons. A third example is formatting the information
in classified ads. Electronic Classifieds, Inc., used NetOwl as part of
a system for formatted access to the information in ads. For a car
ad, NetOwl extracted year, make, model, transmission, color, mileage,
price, etc. Knight Ridder newspapers uses a similar system for putting
ad content into an object database, from which it could more easily be
retrieved. In the Knight Ridder system, there are up to 70 attributes
for a vehicle. One of the problems at Knight Ridder is that their 31
papers use a variety of front-end systems. This means that the same
content can have different descriptions (e.g., “bedroom,” “bdrm,” “bdr,”
“bed”). NetOwl is able to handle these varying descriptions.

6.6 Historical and Bibliographical
Remarks

The field of text-based information extraction has a long history in
the artificial intelligence and computational linguistics areas. How-
ever, modern evaluations and progress of information extraction have
greatly benefited from the DARPA-sponsored Message Understand-
ing Conferences (MUC) from the late 1980s to late 1990s. The last
MUC was MUC-7. NIST still maintains a Web site for MUCs at
http://www-nlpir.nist.gov/related_projects/muc/index.html that includes the
proceedings of MUC-7. This final evaluation includes results for Identi-
Finder and NetOwl. In the MUC-7 evaluation [Krupka and Hausman,
1998, Miller et al., 1998], IdentiFinder was trained on 790,000 words
of New York Times newswire data. In the evaluation, IdentiFinder had
an F-measure of 90.44. On the same evaluation, NetOwl achieved an

6.6 Historical and Bibliographical Remarks 155

F-measure of 91.6. The high F-measure for NetOwl and IdentiFinder
is the result of careful tuning on a well-understood task.
Multiple universities and organizations have participated in con-

ferences such as MUC, which helped to form the field of information
extraction. After MUC, NIST sponsored a new ACE program, which
stands for automatic content extraction. Although similar to MUC, the
task definitions are different. More information on ACE can be found
at http://www.itl.nist.gov/iad/894.01/tests/ace/.

Many of the earlier systems relied heavily on rule-based extrac-
tion patterns. See, for example, AutoSlog[Riloff, 1993], LIEP[Huffman,
1995], PALKA[Kim and Moldovan, 1995], CRYSTAL[Soderland et
al., 1995], RAPIER[Califf and Mooney, 1998], SRV[Freitag, 1998],
and WHISK[Soderland, 1999]. Such systems often directly target at
template filling.
One disadvantage of this approach is that extraction rules are usu-

ally relatively simple. It is quite difficult to take advantage of large
features that incorporate different information sources. Emphasis has
shifted to more complicated machine-learning methods as well as com-
bining machine-learning methods with rule-based systems. For named
entity extraction, machine learning methods were used in several sys-
tems in the later MUC conferences. For example, BBN’s IdentiFinder
was based on HMM [Bikel et al., 1999], and CMU’s MENE system was
based on maximum entropy[Borthwick, 1999]. In MUC-7 named entity
extraction tasks, the best performance was achieved by using a com-
bination of manually developed rules and MaxEnt learning [Mikheev
et al., 1998]. Some more recent evaluations on multilingual named
entity extraction have been organized in the form of shared tasks
as part of the Conference on Natural Language Learning (CoNLL).
The data sets used in the shared tasks are publicly available from
http://cnts.uia.ac.be/conll2003/.
Coreference resolution was part of later MUC and the new ACE

tasks. A number of learning-based approaches appeared in the lit-
erature. One of the earliest machine-learning systems was based on
decision trees [McCarthy and Lehnert, 1995] (also see [Soon et al.,
2001]). The clustering view of coreference resolution was explicitly
discussed in [Cardie and Wagstaff, 1999]. This problem is also closely
related to Anaphora Resolution [Lappin and Leass, 1994], which has
been widely studied in the computational linguistics literature. Rela-
tional learning can be regarded as a special case of template filling.
Systems for learning extraction patterns, such as RAPIER, mentioned

156 6. Looking for Information in Documents

above, can be used for this purpose. See[Craven and Slattery, 2001,
Roth and Yih, 2001, Zelenko et al., 2003] for additional automated
approaches to relational learning.
The principle of maximum entropy has a long history [Jaynes,

1957]. A related formulation, called conditional random fields (CRF),
has also been applied to sequential prediction problems [Lafferty et
al., 2001]. Essentially it is a maximum entropy model that regards
every possible realization of the entire tag sequence as a possible
class label. McCallum’s Mallet software package, obtainable from
http://mallet.cs.umass.edu, contains an implementation of CRF. Although
more complicated to optimize, it is unclear whether CRF has real ad-
vantages over the more standard MaxEnt formulation we described.
The GIS algorithm that we presented was proposed and analyzed
in [Darroch and Ratcliff, 1972]. Although new methods such as im-
proved iterative scaling [Pietra et al., 1997] have been proposed, GIS
is still widely used in practice. Risk minimization and large margin
methods have become popular due to the success of support vector
machines [Vapnik, 1998] and boosting [Freund and Schapire, 1997,
Breiman, 1999, Hastie et al., 2001]. They can be regarded as gen-
eralizations of MaxEnt and can be applied to information extraction
problems. For example, a version of robust risk minimization was ap-
plied to the text-chunking problem [Zhang et al., 2002]. The algorithm
described in Chapter 3 was used in the CoNLL 2003 named entity
shared task [Florian et al., 2003, Zhang and Johnson, 2003], where
results reported in [Florian et al., 2003] achieved the top performance
among the 15 participating systems.
Details on commercial systems are rather sketchy, being closely held

trade secrets. In some cases, the basic ideas are known because the
systems have their roots in publicized university or research lab work,
but one never knows how much reworking has been done. Further
details can be gleaned from the Web pages of the companies mentioned
and from brief news items in the computer trade press.

7

Case Studies

Our approach to text mining is motivated by practical applications.
However, the design and development of prediction methods often take
place in a controlled scientific environment that simulates the real
world. This is necessary for comparative analyses and also for unrav-
eling the pieces of the puzzle that constitute a prediction problem.
The question remains as to the appropriateness of these methods for
practical use. Unlike laboratory environments, the real world is less
readily controlled. Methods may need to be combined and adapted to
the task at hand. User interface issues should be addressed. Practical
considerations, such as resource limitations, must be acknowledged.
In this chapter, we present brief case studies applying text-mining

techniques to real problems. In each study, we shall begin with a
statement of the problem and then show how it can be solved. Our
description emphasizes the text-mining subsystems in the solution.
These case studies focus on certain generic problems that should in-
terest readers with similar concerns. The studies may provide ideas on
how text-mining techniques can be used to solve real-world problems.
The solutions offered in these studies are not the only ones possible but
are good illustrations of text mining in action.

7.1 Market Intelligence from the Web

The Problem
There are many sources of news on theWeb, often taken from newswire
services such as Reuters or Associated Press, that contain valuable in-

158 7. Case Studies

formation about companies and their products. Such information may
be used, for instance, to analyze competing products and shifts in brand
image perceptions. By analyzing such information from current arti-
cles, one may obtain real-time market intelligence. In this case study,
the focus is on detecting critical differences between the text written
about a company and the text for its competitors. The fundamental
question is “What’s different about the stories for this company?” To
this question, one may add numerous modifiers. For example, what is
different about the articles written about IBM in the current quarter
versus the previous quarter? What is different about the stories for
IBM versus those for Microsoft? Or, using an objective measure and a
more complicated question, how did various news stories influence the
relatively higher prices for IBM stock versus that of SunMicrosystems?
There are several issues that need to be addressed. What articles

are to be obtained? How can they be distinguished among competitors?
How can patterns be found in the articles? How should the results be
displayed so that they can be understood by human analysts? Address-
ing these issues calls for a solution that integrates several text-mining
techniques.

Solution Overview
The overall design of a system that solves this problem is shown in Fig-
ure 7.1. The goal is to provide insightful market intelligence on a group
of competitors. We are looking for word patterns in articles and em-
ploying text categorization techniques along with document-gathering
methods. We can map the task into the following components:

1. A real-time Web crawler that monitors newswires for stories
about the competitors. The fetched documents are cleaned and
stored for further analysis.

2. A conditional document retriever that selects only those stories
that meet the specified conditions. This can be done in the form
of a query that specifies the characteristics of the document
group. Typically, two groups are extracted. The documents in the
extracted groups can then be labeled.

3. Text analysis techniques that convert the stories to a numerical
format.

4. Rule induction methods for finding patterns in data. Although
other kinds of categorizers might be useful, rules are more helpful

7.1 Market Intelligence from the Web 159

Figure 7.1. Overview of Competitive Market Intelligence

to the analyst because the word patterns corresponding to each
rule can be readily examined.

5. Presentation techniques for displaying results. These would as-
sist the analyst in selecting interesting word patterns from the
rules. The system would then highlight sections of the original
stories that exhibit these patterns for specific companies.

Methods and Procedures
The first task is assembling the articles for a designated group of com-
petitors. This involves the use of a crawler that operates in real time,
checking at fixed sampling intervals for the arrival of a new article
for one of the competing companies. The sampling interval could be
in such units as seconds or days, depending on the criticality of the
requested information. To avoid repeating the same article, for each
company, an index is kept of the titles and summaries of previous
articles and the time of publication. It need not monitor a universal
library, just the arrival of documents for one of these specified com-
panies. Newswire agencies, such as Reuters, already index stories by
company stock symbols, making it sufficient to check the library of a
newswire service. These articles are posted on the Web in HTML along
with extraneous content, such as advertisements. To prepare for text
mining, the documents should be cleansed of irrelevant information
and converted to a common format such as XML that keeps the text
but eliminates the chaff. The end result is a database of documents
for the competitive group in readable XML format, ready for further
processing. The database may be further adjusted to contain only doc-

160 7. Case Studies

uments from the period of interest. For example, stories more than one
month old may be deleted.
The query specification is used to label the documents. Labels are

not assigned permanently but are computed based on the specifications
from the analyst. We know that we will compare two or more groups
of documents, but the composition of those groups can vary greatly
depending on the satisfaction of various conditions for computing the
labels. We may compare a company to itself over different time periods.
We may compare two or more (groups of) companies over different time
periods. We may compare the same company for instances when the
stock price rose versus when it declined. The stories that meet the
conditions are extracted from the database of documents collected by
the crawler. They form a single group of documents for comparison and
are assigned the same label. The process is repeated for each group
specified by the analyst.
At this point, we have a text categorization problem. The data have

been separated into different groups of labeled documents, all in XML
format. A rule induction categorizer is invoked at this stage. The re-
sult will be analogous to reversing the usual search for documents
that match a pattern using a search engine and finding instead the
most likely patterns for the group of documents. First, a dictionary
of k most frequent words is extracted from the data. For example, we
might find the 150 most frequent words for each class and remove
all the stopwords (the analyst may augment these to include words
besides the usual poor predictor words such as pronouns, articles, etc.).
Each document is then vectorized with binary features and the class
label is attached. Then, we apply rule induction to solve the numerical
classification problem.
This gives a set of rules, with each rule indicating a word pattern.

Although the rules were obtained to maximize predictive performance,
our objective is to review a relatively small collection of these rules to
see whether they are of interest to their competitive position. So not all
rules will be useful. To assist in finding interesting rules, the analyst
may manipulate the list of stopwords. If the rules are found to be less
than promising, some of their less satisfactory words may be added
to the stopwords and the process repeated, causing the rule induction
method to search for alternative patterns not containing the previous
unsatisfactory words.

7.1 Market Intelligence from the Web 161

Finally, the analyst can retrieve the articles that satisfy the rules
of interest, and the system can highlight those sections that have the
indicated word patterns.

System Deployment
A market intelligence system such as this one is primarily for decision
support and requires human interaction. The human analyst must
specify and then revise the conditions of the problem, the direction
to search for solutions, and the degree of interestingness of proposed
solutions. Although we can expect that some of these concepts might be
implicit in the preparation of data, there is sufficient flexibility, with
many possibilities for the problem statement. An implementation of
this system has proven to be very successful in yielding low error rates
for document indexing, but it’s up to the analysts to determine whether
insightful or interesting patterns are found by this text-mining system.
Figure 7.2 is a snapshot of a particular implementation. It shows a

straightforward comparison of news stories for IBM and Microsoft dur-
ing the first two months of 2002. We see that patterns emerge relative
to the retirement of the CEO of IBM and the states’ antitrust actions
against Microsoft. As an example, consider the following excerpt from
a session of market intelligence analytics:

1. Starting with stories dated after September 1, 2001, crawl the
newswires and collect stories for IBM, Microsoft, Dell, Compaq,
and Sun. These are the designated competitors. Sample every 15
minutes and add any new materials. Clean and convert to XML.
Collect share price quotes at the time of stories. Add stories to
current database.

2. Specify conditions for forming groups and labels: IBM stories for
December 2001 versus Sun Microsystems stories for the same
period.

3. Induce rules of the form A or B, where A and B are conjuncts of no
more than two words each. Compare the patterns in rules for the
groups. For IBM, data or sign is a dominant pattern. Displaying
the relevant articles highlights that these are mostly contracts
signed by IBM for data storage and recovery.

4. Form new groups. This time, examine only IBM stories: stories
from December 1, 2001 until December 10, 2001 versus stories
for the rest of December 2001.

162 7. Case Studies

Figure 7.2. Snapshot Comparing IBM and Microsoft Newswires

5. The resulting patterns are: (a) services or network; (b) york or
work. Display articles with these patterns and highlight section
containing word patterns. The first pattern appears in articles
highlighting the signing of many new contracts for IBM Global
Services. The second pattern is useless because york is just the
location of New York.

6. Delete york and induce new rules. The resulting patterns include
sign or systems which is added as the second pattern. Display
articles and highlight words.

7. Continue analysis with new conditions: IBM market capital-
ization increases relative to competitors versus IBM market
capitalization decreases during December 2001.

This illustrates how the analysis can continue with new queries that
arise from analyzing the results of previous queries.

7.2 Lightweight Document Matching for Digital Libraries 163

7.2 Lightweight Document Matching for
Digital Libraries

The Problem
In an age of distributed and pervasive computing, mobile devices with
limited capacity and restricted power are used to access server-based
digital libraries. Whereas retrieval based on key words is a common
way to access the contents of the digital library, we consider scenarios
where users seek to retrieve documents similar to a specific document
on their mobile device. For example, a technician attending to a cus-
tomer problem on-site may prepare a complete description of a problem
that can be stored on a laptop. That document can be indexed, and
similar problems and solutions can be retrieved from a digital library
at a remote server. Typically, digital libraries come with information
retrieval methods that involve a text search with an input query or
limited number of key words and produce an output list of potentially
relevant documents. They usually require substantial storage and com-
puting resources and are therefore server-based. This search engine
style of retrieval may be adapted to use case-based reasoning methods
to find documents that match a given input document, but this strategy
is again less suitable for mobile devices. The problem is to devise a
retrieval method that can take as input lengthy documents, give output
like a search engine (of ranked matching documents), and be able to
run on mobile devices.

Solution Overview
The solution involves the use of a lightweight document-matching
method. This matcher is designed to require minimal data structures
and use fast scoring algorithms to compute efficiently even on mobile
computers. It exploits the structure of the input document—by focusing
on certain parts of the document such as the title, key words, pres-
ence of special tags, etc.—besides obtaining the most frequent words
in the document. The features extracted from the input document are
matched against the documents in the library. In order for this match
to take place efficiently, an offline preprocessor generates a set of data
structures from the documents in the library. These data structures
are: (a) local dictionaries of relevant words for each document and (b)
a global dictionary of unique key words. This preprocessor is run just
once at the start (if new documents are added to the library, it can

164 7. Case Studies

Convert
Documents

to XML

Create Global
Dictionary

Extract Local
Dictionary for

Each Document

Compute Table
of Word Weights

Create Extract
Files for Matcher

Create Unique
Identifiers

Figure 7.3. Preprocessing for Lightweight Document Matching

incrementally update the data structures). These data structures are
small enough to be cached in mobile devices. The preprocessing step is
shown in Figure 7.3.
An online matching process now uses this information to score the

relevance of stored documents to an input query document. The scoring
algorithm uses the count of matched words as a base score and then
assigns bonuses to words that have high predictive value. It optionally
assigns an extra bonus for words that matched from salient substruc-
tures in a document, such as a title, and domain-specific document tags
(for example, specific product or release identification associated with
a document). The online process is shown in Figure 7.4.

Methods and Procedures
Let’s first look at the back-end process that generates the data struc-
tures necessary for the matcher to work. It uses an XML-style markup
language to delineate the parts of the documents relevant to text
retrieval and presentation to the end user. Two data structures are
derived from the resulting file:

• A set of local dictionaries that contains the words that are rel-
evant to specific documents. Typically, eight to ten key words
are assigned for each document. The words are not unique to
documents; the same word may appear in many documents.

7.2 Lightweight Document Matching for Digital Libraries 165

Figure 7.4. Lightweight Document Matching

• A pooled, global dictionary containing a list of all words that are
relevant to any document. This is a unique collection of words.

The XML document contains information relevant to document re-
trieval that is not contained in these two data structures, such as
document titles, and possibly application-specific attributes such as
component identifiers. A final XML-style extract document incorpo-
rates the contents of the local dictionaries with these additional
attributes. These two data structures, a global dictionary and an
extract file representing a set of local dictionaries and additional at-
tributes, are sufficient for the fast document matcher to score new
documents.
The front-end matching process takes an input document and out-

puts a ranked list of matched documents. A special scoring function
is employed to compare the input document to the stored document
representations. Words in the new document are matched to words in
the global dictionary. Words must match exactly (plurals are mapped
to singular) so that a hash table can be employed for almost immediate
lookup in the table. The words in the global dictionary point to the local
dictionaries of the stored documents.
The base score of each stored document is the number of its local

keywords found in the new document. A bonus, usually 1, is then added
to the base score for every matched word that also appears in a title or
special tags (e.g., product or release identifier). Furthermore, a bonus
equal to the predictive value of a matched word is also given. The

166 7. Case Studies

predictive value of a word is 1/num, where num is the number of stored
documents that contain that word.
The key characteristics of the lightweight document matcher that

enable it to compute efficiently are:

1. Simplified additive scoring of positive words. The simple positive
score has the great advantage of transparency of scoring, leav-
ing the user with a clear explanation, in terms of identified key
words, for the retrieval of a matched document.

2. Exact word match with synonyms and no stemming except for
plurals. This is justified since the feature space is reduced from
full indexing.

3. Reduced indexing with no document frequencies. This has the
greatest impact on reducing complexity and storage require-
ments. The lightweight matcher uses a reduced inverted index
as the basis of all matching without any additional computation.

How would this compare with a more “classical” document-matching
system? Usually, document matchers compute more complicated dis-
tance measures for scoring the match. These would typically be more
helpful with “recall” of documents that the lightweight matcher might
be giving lesser importance. Most off-the-shelf document matchers also
use full indexing, which dramatically increases the number of refer-
ences to documents, the computations for matching words, and the
storage requirements. In the general situation, a full index may be
beneficial. But for a mobile user interested in fast retrieval, the simpler
lightweight matcher is adequate.

System Deployment
A document-matching system such as this one is most suitable for a
Java-based implementation in which the matcher is invoked from a
browser. A graphical user interface for such a deployment in a help
desk application is shown in Figure 7.5. The response (the ranked list
of matched documents) can be produced in HTML for easy display in a
browser. The data structures used by the matcher can easily be stored
on the mobile device itself and the server-based library accessed only
for retrieving the specific documents needed.

7.3 Generating Model Cases for Help Desk Applications 167

Figure 7.5. An Input Interface for Lightweight Document Matching

7.3 Generating Model Cases for Help Desk
Applications

The Problem
In a help desk setting, customers submit problems or queries online
(or via a call center) to the vendor of a product and receive solutions
or answers. Each interaction can be considered a text document. Not
all users of a product report unique problems to the help desk. It can
be expected that most problem reports are repeat problems, with many
users experiencing the same difficulty and receiving the same fix. Some
of the corresponding documents may be concise, almost directly decom-
posing into a problem statement and solution. Others, such as those
from call centers, might be almost complete transcripts of customer
and service representative discussions. In such situations, individual
documents may include much text that does not relate to the ultimate
problem resolution. The central purpose of such documents would be
simply to maintain records of a customer’s interaction with a service
representative.
As a result, we have a database of documents that may be ill-formed,

containing redundant and poorly organized documents. Our problem
is to transform the database into a concise set of summarized re-

168 7. Case Studies

Figure 7.6. Overview of Model Case Generation

ports, model cases, which are more amenable to search and problem
resolution without expert intervention.

Solution Overview
The heart of the solution to this problem is the use of document-
clustering methods. Ideally, we would like to reduce the size of this
database by eliminating the redundant documents and summarizing
the ones that remain. To remove the redundant documents, we will con-
sider the use of high-dimensional clustering techniques coupled with
exemplar selection. To cleanse the remaining documents, we consider
both knowledge extraction techniques and document summarization
methods. The overall process is summarized in Figure 7.6.
Clustering algorithms process documents in a transformed state,

where the documents are represented as a collection of terms or words,
so the first step is transforming the documents into vectors. The clus-
tering process partitions the set of documents into groups of similar
documents. Clustering on its own does not reduce the number of docu-
ments. The individual documents remain the same, only now they are
grouped with similar documents. To eliminate redundancy, the final
step is to select exemplars from each cluster and to produce a set of
summary documents. These exemplars and summaries represent the
model cases.

Methods and Procedures
To generate vectors, the structure of the documents is taken into ac-
count. Each document has a title. It may also have key words assigned
to it. The words in the title as well as the key words are used along with
the m most frequent words in the document to generate a vector for the

7.3 Generating Model Cases for Help Desk Applications 169

document. A simple Boolean feature per word (to indicate its presence
or absence) is usually sufficient, although other transformations may
be desirable depending on the clustering method chosen. The main
concept is to reduce the number of overall words that are considered,
which reduces the representational and computational tasks of the
clustering algorithm. Reduced indexing can be effective for these goals
if performed prior to clustering. Also, the size of the documents must
be taken into consideration. It is important to normalize documents.
Otherwise, longer documents will tend to be similar by chance.
The clustering algorithm, much like any information retrieval sys-

tem, works with this vector representation of the original documents.
There are many clustering algorithms available. In principle, any of
them can be used. In practice, it may be necessary to consider whether
they can handle the complexity of the number of documents and
number of features involved. Another criterion might be whether the
number of clusters is determined dynamically or is a user-specified
parameter of the clustering algorithm (in which case it would need
to be tuned using validation data). How many clusters should one
expect to obtain? Naturally, this depends on the nature of the doc-
uments. Because each document records a problem and a solution,
and because the problems may be similar but still have critical dis-
tinctions that result in differing solutions, the number of clusters is
typically relatively large, much larger than the number of clusters
needed for summarization of problem types alone. How can we ob-
jectively evaluate clustering performance? Very often, the objective
measure is related to the clustering technique. For example, k-means
clustering can measure overall distance from the mean. Techniques
that are based on nearest-neighbor distance, such as most information
retrieval techniques, can measure distance from the nearest neighbor
or the average distance from other cluster members.
Obtaining good clusters is very important since they designate

groups of similar documents. Once clusters are obtained, exemplars
can be selected from them. If the documents in a cluster are redundant
(e.g., each describes the same problem and solution), then selecting
one document from the cluster can be sufficient to describe the cluster.
But since the clustering process is imperfect and some clusters may
be large, looking at individual documents within a cluster, we may
still see some variability. So it may be safer to select more than one
exemplar document to represent the cluster. The same measure of
evaluation used for clustering can be used to find exemplar documents

170 7. Case Studies

for a cluster. The local dictionary of a document cluster can be used as
a virtual document that is matched to the members of the cluster. The
top-k matched documents can be considered a ranked list of exemplar
documents for the cluster.
The set of exemplars already achieves a reduction of the original

database. Alternatively, summarization might be attempted. Ideally,
each cluster contains documents for the same topic. Unlike single-
document summarization, summarizing documents on a common topic
is sample-based and explores common patterns across many docu-
ments. The summarization can be done over all the documents in the
cluster or over the exemplars of that cluster. The summarized docu-
ments can either be added to the list of exemplars or replace them. At
the end of this process, model cases are obtained.
How representative are the model cases of the original database?

This depends on the quality and clarity of the original documents,
which, in turn, affects the quality of the clusters obtained. It is best to
have the original documents stripped to problem–solution pairs before
generating model cases. However, one can readily envision real-world
scenarios where the documents are poorly structured. For example,
consider the following possibilities:

• The customer e-mails the problem statement, and a service rep-
resentative writes a solution. Because a problem–solution model
is expected, and the discussants are asked to compose their
thoughts in writing, the resultant document tends toward clarity
and conciseness.

• The customer communicates by phone to a call center, and the
service representative creates a real-time approximate transcript
of their dialogue. Such documents tend to be rambling, with
extraneous text.

For the first possibility, little preparation is needed. For the sec-
ond possibility, additional effort is needed to extract critical sections.
Knowledge-based models can be very helpful. For example, we know
that the problem statement is typically at the beginning of the
document and the solution is at the end. Moreover, the service rep-
resentatives can be told to prefix critical sections with key words such
as action taken. Far more helpful, and far more powerful for a self-help
document, would be for the service representative to write a one-line or
two-line summary of the solution. This takes a little extra time, reduces
the time available for a single representative to take more calls, and is

7.3 Generating Model Cases for Help Desk Applications 171

not needed when the main purpose of the document is to maintain
a record of the customer’s problem. However, it does have long-term
gains in producing more useful model cases.
Summarization and exemplar selection are alternative approaches

to document reduction, and each has its advantages and disadvan-
tages. The exemplar approach keeps documents intact and coherent.
Summarization by topic merges excerpts of many documents and is
therefore more susceptible to mistakes in the extraction of the excerpts.
However, the exemplar approach is more dependent on starting with
cleansed documents that contain the critical sections of the document,
such as the problem statement and solution. The topic summarization
technique has the potential to find those sections because they will ap-
pear in many samples while discarding those sections that are specific
to individual documents. So should one use exemplars or do summa-
rization? There is no single answer that will work for all help desk
applications. The best approach might well be a hybrid combination of
these two approaches based on knowledge of the documents involved.

System Deployment
There are at least two ways of deploying such a system. Vendors may
deploy it for internal use in which the system provides an overview of
the problems that customers are facing. In this scenario, the system
serves to assist managers and product designers interested in gather-
ing insights from help desk queries. Such an overview may be helpful
to identify trouble spots that need extra resources. For example, a com-
puter vendor might discover, that, for their products, printer problems
comprise a large percentage of customer complaints.
In a more ambitious deployment, model-case reports can increase

the potential for self-help by customers. In such a scenario, a customer
may file problem reports online and be automatically provided with
a concise summary of the fixes that helped solve similar problems in
the past. Automated procedures cannot be expected to perform these
tasks perfectly. However, one can find real-world circumstances where
imperfect results will still provide large benefits. Typically, for even
large help desk databases, the number of model cases for the most
common problems is small, perhaps no more than a few hundred. As a
result, the matching process can be very efficient and provides a way
to deliver a quick initial answer that might fix the customer’s problem.

172 7. Case Studies

7.4 Assigning Topics to News Articles

The Problem
News services, such as Associated Press, the Wall Street Journal, Xin-
hua News Service, Reuters News Service, etc., provide news stories to
subscribers daily. Their subscribers are newspapers, television and ra-
dio stations, Web sites, and private entities. Each of the news services
provides hundreds of stories every day, although a significant number
are minor variants of earlier stories. Subscriber organizations like to
have these stories tagged with index terms, drawn from a fixed set
for each source, so that stories can be routed to the correct desk or
to a database so they can more accurately be retrieved later on. This
process of assigning index tags or topic names can be accomplished by
having a set of human coders read each story and assign it one or more
topic codes. Besides being expensive, such a process can be inconsistent
because no two coders would view the same story in exactly the same
way. The problem is to devise an automatedmethod for assigning topics
(from a fixed set) to news articles.

Solution Overview
The solution to this problem involves text categorization. Each story
is associated with a vector of features derived from the story. The
features are words that occur in it, each feature having a numeric value
based on the frequency of occurrence or a Boolean value indicating the
presence or absence of a word. Because the potential vocabulary from
a large set of news stories is a very long list, the total feature set is
huge. However, a particular news story has values for only a few of
the total set of features. The vector corresponding to the story is then
passed through a set of binary categorizers, one for each topic code.
Each categorizer gives the story a positive or negative label depending
on whether the story is classified in the corresponding topic class or
not. At the end of the process, all the positive labels are collected
and the story is assigned the corresponding topics. The categorizers
are obtained using a machine-learning algorithm that processes a set
of story feature vectors for which the correct topic codes have been
assigned. The overall process is summarized in Figure 7.7. From a text-
mining perspective, the two key aspects of the solution are: (a) feature
generation; (b) use of multiple binary classifiers.

7.4 Assigning Topics to News Articles 173

Figure 7.7. Assigning Topics to Newswire Stories

Methods and Procedures
Although the solution appears to be a straightforward application of
text categorization, there are many crucial questions that pertain to its
use for newswire stories. How much data should be used for training?
What features are most appropriate for newswire stories? Which clas-
sifier would be most suited? When should the classifiers be updated?
We will answer these questions within the context of a particular
study that utilizes a fairly large collection of stories made available
by Reuters. Although a different data context may give different an-
swers, the methodology used for arriving at the answers should be
quite similar to the one that we outline here.
Let us first examine this Reuters sample. The collection consists of

some 810,000 stories covering the Reuters newswire over a year, from
August 20, 1996 to August 19, 1997. Uncompressed, it is about 2.5 giga-
bytes. Each story has a certain amount of associated metadata, such as
creation date, publication date, source, etc. Included in the metadata
are three codes: region codes, topic codes, and industry codes. We focus
here on the topic codes. Some of the topics, along with the number of
associated stories, are shown in Table 7.1.
For this data collection, we note that (a) there is wide variation in

the frequency of topic assignment, and (b) the topic structure is partly
hierarchical. For example,Markets is a supertopic of InterbankMarkets
and Equity Markets. A story classified as Equity Markets is necessarily

174 7. Case Studies

Table 7.1. Some Topics in the Reuters Data

Topic Number of Stories
Markets 200190

Equity Markets 48700
Sports 35317

Interbank Markets 28185
Annual Results 23212

Elections 11532
Religion 2849

Unemployment 2136
Advertising, Promotion 2084

Obituaries 844

also classified as Markets. However, not all stories are classified down
to an end category. There are stories classified as Markets that are not
in Interbank Markets or Equity Markets or any of the other subtopics.
Although algorithms exist to exploit hierarchies in the classification
process, we will not pursue this avenue. Markets and Interbank Mar-
kets are merely two different topics, just like Equity Markets and
Religion. Because more than one topic can be assigned to a story, it
is simpler to view the overall classification as a collection of binary
problems.
The presence of such a large collection of training data reduces the

choice of classification model to either a linear classifier or a decision
tree, as both can cope well with the amount of data at hand. A decision
tree classifier has the advantage that the tree can be reduced to a set of
more or less understandable classification rules, which allow a classifi-
cation model to be manually adjusted if desired. However, let’s see what
the data have to say. For our sample, linear classifiers are consistently
better performers than single decision trees. A closer examination
shows that this is a result of the typically highly skewed distribution
of stories into newswire categories. For example, if we examine results
for the three most frequent categories, three others occurring about
1/10 as often, three more categories occurring about 1/100 as often, and
three occurring about 1/1000 as often, it is immediately clear that the
best results are in the most frequent categories. Some less frequent
categories (e.g., sports) do have very good categorization results and
others, such as war and civil war, are fair, but many of the others are
quite poor. For the less frequent categories, the decision tree gives a
better result than the linear method, but even there its performance is

7.4 Assigning Topics to News Articles 175

not very impressive. Overall, based on the data, the linear classifier is
superior.
A key issue for the newswire domain with time-stamped stories is

how the classifier performance would decay with time. A classifica-
tion model trained with documents from a time period t1 to t2 has
a certain accuracy at the present time t3 but presumably will have
a lower accuracy at a later time tn, decreasing with increasing n. An
understanding of this decay will help determine when and how often
the classifiers must be retrained. Some experimentation is necessary
to assess this impact of time for a specific sample. We shall illustrate
the nature of the experimentation involved. Since we have data for
one year, we can partition them into 12 groups, each corresponding
to all stories appearing during a month. We use the twelfth month as
our test data and train classification models based on each of the 11
preceding months, the previous 2 months, the previous 3 months, the
previous 6 months, and the preceding 11 months (i.e., all the available
training data). The objective is to see how performance varies with
the different windows into the past. In doing this kind of partition,
care must be taken to ensure that there are enough data to train the
classifiers. For the available data, the number of documents per month
is 67,500, with some seasonal variation. For example, the number of
stories for the first month is 62,935, for the last training month 66,193,
and for the test set 69,626. For these data, the breakdown into months
is justified. Looking at the performance of linear models, we observed
that the model built on month 1 data had a performance just slightly
lower than the model built on the whole collection. The implications of
this in an operational environment are significant and comforting. At
least for this kind of data, frequent model updating does not appear to
be necessary if the original linear model was built on sufficient data.
Another implication of the experiment above is the amount of data

needed for training. For the linear model, it would seem that using just
one month of data is just as good as using the full 12 months of data. In
contrast, the situation for decision tree models is not as encouraging—
using more historical data provides a clear improvement over using
only one of the preceding months. Clearly, for these data, linear clas-
sifiers are preferable unless there is some overwhelming advantage to
be gained by having a transparent rule-based solution instead.
For newswire stories, the text is usually grammatical and case in-

formation is best retained in the tokens and features extracted. The
feature sets can range from all possible tokens, to tokens not including

176 7. Case Studies

numbers, to tokens that had been stemmed by an inflectional stemmer.
Which is most suitable? Auxiliary experiments can be conducted to
determine the effectiveness of different feature sets. For the Reuters
data, feature set sizes ranged from almost 400,000 to 1000. We ob-
tained quite reasonable results with 5000 features. With more than
5000 features, the additional performance gains were much smaller.
Stemming was somewhat helpful for decision trees and when story ti-
tles were not considered as special features. But, in general, stemming
was not worth the extra computational effort. Using titles as features
was clearly beneficial. This is not unexpected. Newswire articles tend
to rely on high-information titles to give the reader a quick feel for the
topic.
An examination of the categories with poor performance sheds some

light on how performance is affected by the nature of newswire stories.
For example, it appears that recency matters less for less frequent
categories. A possible explanation is that news topics tend to occur
in bursts, so training data for a particular category is localized and
may not have appeared recently. Although plausible, it would take a
detailed study to verify that this is indeed the case.
Another issue is that although some topics seem to be inherently

cohesive and it would seem that it should be easy to build high-
performance classifiers for them, this does not always happen. As an
example from the Reuters data, we looked at the rule set generated
by the decision tree classifier for the religion topic, did an analysis of
classification failures for the first 40 or so errors, and have the following
comments:

• As is often the case in newswires, stories that are substantially
identical are sent over the wire numerous times. Some of these
stories are summaries with several topics. If one of these is re-
lated to religion but is only a brief mention, the classifier will
likely not find it, and because the story appears several times,
what is really a single mistake appears as multiple mistakes.

• Some stories may have religion as only a subtopic of some other
theme. For example, there are stories in the collection regarding
human rights in China in which religion is one of the rights. This
story and minor variants are also repeated, leading to multiple
errors when not classed as religion by the classifier.

• In some cases, the classifier did not generate a rule that would
have covered a number of cases. For example, there is no rule

7.4 Assigning Topics to News Articles 177

regarding multiple occurrences in a story of the word religion,
which humans might expect to be reasonable. Apparently, many
stories that are not categorized as religion also contain words
typically associated with religion. In fact, only about half the
occurrences in the test set of the word religion are in stories cat-
egorized as religion. The remainder are in a number of different
categories, the most frequent being international relations and
domestic politics.

This illustrates the difficulty in predicting the performance of topic
classifiers based on human intuition. It is best to let the data speak for
themselves.
In all these experiments, the three usual metrics are useful for mea-

suring performance: precision, recall, and F-measure. The F-measure
is useful for simple comparisons among alternatives. When the F-
measures are comparable, the precision and recall can be examined.
When examining the performance of a system that consists of a large
number of classifiers, it is common to compute the performance of each
classifier and then compute their microaverage. For example, we com-
pute the number of true positives, false positives, and false negatives
for each of the 103 classifiers needed for the Reuters data. We sum
them to get the total number of true positives, false positives, and
false negatives. Microaveraged precision, recall, and F-measure for the
overall system are computed over these totals.
We can draw several conclusions about classifying newswire stories

from our experience with the Reuters data:

• The key characteristics of newswire data are: (a) big data;
(b) many overlapping, possibly hierarchical topics; and (c)
time-stamped stories.

• Even with the much larger feature space and sample sizes, the
simplest methods can be quite effective. One may not need to do
any special processing to create a dictionary. Words with numer-
ical content do not necessarily have additional predictive value
and can possibly be ignored.

• It is clear that the amount and recency of training data needed
to build a classification model for newswire texts are dependent
on the model. A linear model is much less sensitive to the recency
effect and requires less training data.

178 7. Case Studies

• Single decision tree or decision rule classifiers can be more ac-
curate for less frequent (rare) topics, especially if they take into
account the highly skewed populations of such categories.

System Deployment
The obvious deployment of such a system is as a filter for an incom-
ing stream of newswire articles. As stories arrive at the subscriber,
they are automatically tagged by the system and, depending on the
topics assigned, distributed to the appropriate people or indexed into a
database. The advantage of such a deployment is timely access by the
subscriber and less resources for monitoring the incoming stream. It
may also be usefully employed as a filter for outgoing newswire arti-
cles, in which case the distributor maintains the list of topics and the
system helps deliver articles that are labeled with more consistency
than manually labeled articles.
Depending on the confidence in the system, its topic assignments

may be manually reviewed before processing. Since the story has al-
ready been assigned topics, the manual review can be much faster than
labeling the story from scratch. Alternatively, its performance may
be reviewed periodically with mechanisms in place to collect feedback
from the recipients.
Procedures need to be in place for maintenance of the system as well.

The recipients can be asked to review the labeling of the stories they
receive, and their feedback can be stored as the “correct” labels for the
stories. In this manner, a collection of labeled stories can be grown.
Periodically, or when performance deteriorates, such collections can be
used to retrain the classifiers in the system. Retraining may also be
necessary when new topics are introduced.

7.5 E-mail Filtering

The Problem
With the widespread use of e-mail for communication, the volume of
e-mail that a person receives in a day can be quite formidable. Without
any tools to manage and process the incoming messages, one could eas-
ily spend all of one’s time just processing e-mail, and it’s easy to miss
more urgent messages buried in a mass of junk mail. Especially useful
would be a tool that organizes incoming messages into a set of folders.

7.5 E-mail Filtering 179

The tool needs to be highly configurable—each user (or even the same
user at different times) will have different sorts of folders and different
kinds of messages. Of special interest is the class of spam messages,
unsolicited messages sent automatically by mass-marketing agencies.
It would be useful if the tool could also distinguish spam from nonspam
messages. The tool will have full access to the content of the messages
as well as other characteristics (such as message date and time, sender
details, etc.). Designing this tool is the well-known problem of e-mail
filtering.

Solution Overview
As can be expected for an issue of such importance, many approaches
to solving this problem have been proposed. Every modern e-mail client
includes some form of e-mail filtering. We shall examine one such so-
lution available in a version of the open-source Mozilla e-mail client.
Most other solutions have a similar structure. Mail arrives in a special
folder called the Inbox. The e-mail filter is typically applied to messages
in this folder. There are two distinct parts of this filter:

• A set of rules specified by the user. These rules are applied by the
system to messages in a folder such as Inbox and can be moved
(or its attributes modified) as directed by satisfied rules. The user
specifies the rules, which rely on string-matching expressions
(e.g., regular expressions) to check the contents of a message. The
rules also exploit the structure of the message. For example, one
can distinguish among message fields such as sender or subject.

• A trainable classifier that identifies all the spam messages. All
messages identified as spam are put into a designated junk folder
(which the user can review at leisure to ensure that nothing im-
portant has been deleted). To train the classifier, facilities are
available for labeling messages as spam or nonspam.

The overall process of e-mail filtering in Mozilla is shown in Figure
7.8.

Methods and Procedures
The user-specified rules in Mozilla have an expressive structure that
allows the user to create powerful but intuitive rules to classify mes-
sages in a folder such as Inbox. If a rule is satisfied, the action to be
taken can be as simple as moving the message to another folder, or

180 7. Case Studies

Figure 7.8. Overview of E-Mail Filtering in Mozilla

it can involve changing attributes of the message (e.g., its priority).
In each rule, the user can specify atomic conditions and then specify
whether a conjunct or disjunct of these conditions should be satisfied.
The atomic conditions themselves can be focused on a specific field
of the message (e.g., the sender field, the body of the message, the
subject, etc.). In this version of Mozilla, simple strings can be speci-
fied for matching purposes. User-specified rules represent an easy and
intuitive way for users to manage their messages. For example, it’s
easy to add a rule that if the sender of a message is one’s boss, then
its priority should be increased. More commonly, messages that match
a certain pattern can be simply sent to the trash folder. An example of
this is shown in Figure 7.9.
The spam classifier in this version of Mozilla is a Bayesian model.

This essentially consists of a large table of estimates of the spam prob-
abilities of words in the message. There is a clear distinction among the
impacts of different errors. A spam message misclassified as nonspam
(false negative for a spam identifier) is a less serious error than a
nonspam message identified as spam (false positive). Ideally, the spam
classifier should generate zero false positive errors even at the risk of
generating more false negative errors.
To use the spam classifier, a message is tokenized and the 15 most in-

teresting tokens/words are found. Interestingness is measured within
Mozilla by how far their spam probability is from a neutral .5. Their
associated probabilities are taken from the Bayesian model, and an
estimate is computed of the probability that the message is spam. If

7.5 E-mail Filtering 181

Figure 7.9. A User-Specified E-Mail Filtering Rule in Mozilla

this probability is greater than a certain threshold (in this version of
Mozilla it is 90%), the message is classified as spam; otherwise it is
nonspam. Because of the cost of tokenizing, table lookup, and probabil-
ity computation, the spam classifier is used after the user-defined rules
have been applied. At this stage, hopefully there are fewer messages to
process.
The spam classifier is built using a corpus of messages in which each

message is labeled as spam or nonspam by the user. Each message is
viewed as a text document, including headers and embedded HTML,
Javascript, etc. All parts of the message that can be viewed as text
are considered. The text is tokenized and tokens that are all digits or
HTML comments are ignored. Case differences are also ignored. For
each of the two categories, spam and nonspam, two large tables are
computed with the words in messages of that category, their corre-
sponding counts, and the number of messages. From these two tables,
it is straightforward to compute a third table of probability estimates
for each word. This third table is the Bayesian model. To compute the
probability estimates, the particular formula used within Mozilla is an
empirical one and is only one of several possibilities. The crucial aspect

182 7. Case Studies

is that it biases the probabilities to avoid false positives as much as
possible.

System Deployment
E-mail filters are typically deployed in e-mail clients. They can result in
significant productivity boosts in the workplace by assisting employees
in managing and processing their e-mail. Such filters can also be used
to route incoming messages to the appropriate person. For example, a
customer service center, may have only one e-mail address but several
representatives.
Specifying the rules is typically done through a user interface that

ensures that the rules are syntactically correct. An interface that
caters to several levels of user expertise would be useful. Casual users
may, for example, prefer to duplicate and modify predefined rules.
Intermediate users may want to define their rules from scratch. Ad-
vanced users may want to tweak collections of rules by reordering them
or by examining historical logs of filtering behavior.
The advantages of spam identification are obvious at both the system

level and the user level. The main issue with spam identification is the
constantly changing nature of spam, which requires frequent retrain-
ing. Crucial to effective deployment is the user interface for specifying
the training cases. If it’s too cumbersome, users may not be inclined
to use it or may end up with weak classifiers trained on insufficient or
outdated data. Although the Mozilla client includes a Bayesian classi-
fier, in principle a rule-based classifier would be more compatible with
the user-specified rules. It would allow the user to manually tweak the
generated rules and would provide the user with transparency of the
spam identification process.

7.6 Search Engines

The Problem
Search engines were discussed earlier in the context of information
retrieval. The problem that search engines address is a special kind of
information retrieval. The user specifies a search query that consists of
relevant words. The problem for the search engine is to output a ranked
list of Web pages that match the user specification. The most relevant
pages must have a higher rank. Part of the problem is to design a query

7.6 Search Engines 183

language that allows users to specify precisely the pages they wish to
retrieve. Obviously, the language has to be easy to use. The queries
themselves are expected to be “general purpose” (i.e., not specialized for
any specific subject or topic). They might even be complete sentences.
However, queries are expected to be composed of few words.

Solution Overview
There are many search engines, and each does things a bit differently.
Here we shall describe a solution inspired by the search engine Teoma.
The search engine structure is summarized in Figure 7.10. There are
typically three aspects to handling general queries from users:

• First, an index must be created that links words to documents.
This index creation process usually involves a Web crawler that
retrieves documents from the Web. These retrieved documents
are subjected to link and text analyses to create the inverted
index that links words to documents. This index is central to
the search algorithms. Since the set of documents on the Web is
constantly changing, the index must be maintained and updated
as necessary.

• The front end of the search engine accepts queries from the user.
The query is parsed and a set of relevant documents is retrieved.
These documents are clustered into groups that can further be
labeled based on the common words within each group and the
words in the search query. Finally, the documents can be ranked
based on the links.

• The ranked list can now be presented to the user as the output of
the search query. Besides this ranked list, other useful informa-
tion may also be provided. For example, the labeled clusters may
be offered as a way for users to refine their search. Also, the most
authoritative documents within the clusters may be provided to
the user as additional resources.

Methods and Procedures
The query language used by search engines is quite simple. Key words
are provided as a list. A meta-language is available that allows the
introduction of logical operators (AND, OR, etc.). Users may spec-
ify whether case information should be considered or not. The query

184 7. Case Studies

Figure 7.10. Overview of Search Engine Structure

processor also includes a spell-checker that allows it to auto-correct
typographical errors made by users. Additional advanced search tools
allow the user to focus the search query by diverse criteria such as
geographical region, domain, date, language, location of search terms
in page, etc. These serve as filters with meta-information that can
drastically reduce the search space.
The index is crucial for search quality (the search engine cannot find

what it has not indexed). However, as the index size grows, the search
process takes more time and more complex techniques are needed. The
size of the index can be controlled somewhat by limiting the size of
the input text. When considering documents for indexing, it may be
truncated to the first 100 words, for example. The justification is that
the most relevant parts of a document are typically at the beginning
of a document. Auxiliary information about the word’s position and
frequency in the document, and also information about links, may be
computed and stored during the assembly of an index.
The inverted index allows easy retrieval of documents. Ranking

these documents can be done simply using link analysis (as described
in Chapter 4). Alternatively, the relevance of a document to the search
query can be measured even more precisely by giving higher priority
to links from authoritative documents. Instead of determining a doc-
ument’s authority by its popularity among all documents, it can be
determined more precisely by examining its popularity among docu-
ments on the same subject. This requires first forming clusters of the
documents. These clusters can also be labeled using common identify-

7.6 Search Engines 185

Figure 7.11. Screenshot of the Teoma Search Engine

ing words in a cluster and the query key words. Once the ranks are
determined, the documents can be sorted by relevance.
A by-product of this process is that it also clusters documents into

subjects that are hierarchically organized, thereby allowing search re-
sults to be seen in context. This context allows the user to further refine
the search. Since the authoritative documents can also be identified,
they can also be provided to the user as additional resources.

System Deployment
Search engines are designed for retrieving pages from the World Wide
Web. This is their most widely observed form of deployment. As an
example, Figure 7.11 illustrates the presentation of search results by
the Teoma search engine.
However, by restricting the space of documents they search, search

engines can also be deployed usefully in other settings. For example,
corporate Web sites with a large number of pages can benefit from a
search engine that allows visitors to quickly retrieve relevant pages.

186 7. Case Studies

Search engines can be deployed by clients of self-help applications to
search a knowledge base of static documents.
Increasingly, search engine technology is being accessed from tool-

bars that integrate access to the search engine databases with the
browser itself. This allows the user to perform a search from any Web
page. Toolbars also allow the user to customize the presentation of
results. For example, users may want to highlight the search key words
in the retrieved documents, or they may want links to the current
document’s text.
Search engines may also be deployed such that they separate the

retrieved links into several categories. For example, some search en-
gines sell advertisers placement in a Sponsored links section in which
highly relevant sponsored results are displayed. If the search engine
can handle an arbitrarily large number of words in a query, then
the search engine may also be used for document matching by hav-
ing a “relevant links” button in the browser. Clicking on this button
would make the current page a search-query string and return highly
relevant documents.

7.7 Extracting Named Entities from
Documents

The Problem
Named entity recognition was discussed earlier as a key task in ex-
tracting information from unstructured electronic text. This topic was
a central theme in the message understanding conferences (MUCs).
More recently, it has also received attention in the form of shared
tasks in the CoNLL conferences. These shared tasks have the following
format: (a) annotated training and validation data are provided to all
participants (hence the name shared task); (b) the participants design
and tune their systems; and (c) these systems are then tested on un-
seen data and results are compared and analyzed. In this case study,
we examine the shared task in CoNLL-2003. The data consist of anno-
tated tokens for English and German text. The text is from newswire
stories. Every token is classified as one of these nine categories: O,
B-ORG, B-PER, B-LOC, B-MISC, I-ORG, I-PER, I-LOC, and I-MISC.
Besides annotated data, some dictionaries are also supplied. The goal
is to build a robust named entity recognition system for such data. The
methodology should be applicable to a number of languages.

7.7 Extracting Named Entities from Documents 187

Solution Overview
There are many solutions proposed for this problem. The core of the one
we will describe is a robust linear classification system. It involves the
use of a very large number of features. The features can be grouped
into levels of linguistic sophistication. The simplest ones are token-
based and are available for many languages. More complex ones are
increasingly language-specific. Feature values are extracted from the
training data and nine linear classifiers are constructed—binary clas-
sifiers, one for each of the nine classes. Validation data are used to
assess the impact of the features, and the ones that optimize system
performance are retained.
For new text, features are extracted for each token, which is then

scored by the nine classifiers. The token is classified based on these
scores. The class with the highest score wins. After all the tokens for a
sentence are classified in this manner, some smoothing is performed
to remove any inconsistent classifications of individual tokens. The
overall process is shown in Figure 7.12.

Methods and Procedures
General techniques for named entity recognition have been discussed
in Chapter 6. We follow the general approach outlined there and treat
the problem as a sequential token-based tagging problem. The goal is
to predict the class label associated with each token based on features
extracted from the text. Since the features are crucial for prediction,
we will discuss them in more detail.

Figure 7.12. Labeling Tokens as Named Entities

188 7. Case Studies

The basic linguistic features are all aligned with the tokens. Specif-
ically, we consider features listed in Table 7.2. These features are
represented using a binary encoding scheme where each component
of the feature vector corresponds to an occurrence of a feature.
After studying many different feature combinations on the English

development set, the ones shown in Table 7.3 were deemed interesting.
The combinations have been listed such that there is a distinct incre-
mental improvement with an increasing numerical Experiment ID. To
give a rough indication of the scale of improvement, the F-measure
on an independent test set ranged from 83 to 92. More details can be
found in the references cited in Section 7.9. We now analyze the impact
of these combinations of features.
There was only a small performance difference between Experiment

1 and Experiment 2. This implies that tokens by themselves, whether
represented as mixed-case text or not, do not significantly affect the
system performance.

Table 7.2. Features for Named Entity Recognition

Feature ID Feature Description
A Tokens turned into all upper case in a window of ±2
B Tokens themselves in a window of ±2
C The previous two predicted tags and

the conjunction of the previous tag and the current token
D Initial cap of tokens in a window of ±2
E More elaborate word type information:

initial cap, all cap, all digits, etc.
F Token prefix and token suffix (up to length four)
G POS annotation provided in the shared task
H Syntactic chunking annotation provided in the shared task
I A number of dictionaries from different sources:

location, person, and organizations

Table 7.3. Interesting Feature Combinations for Named Entity Recognition

Experiment ID Features Used
1 A+C
2 B+C
3 A+F
4 B+C+D
5 B+C+D+E+F
6 B+C+D+E+F+G+H
7 B+C+D+E+F+G+H+I

7.7 Extracting Named Entities from Documents 189

Experiment 3 showed that even without case information, the perfor-
mance of a statistical named entity recognition system can be greatly
enhanced with token prefix and suffix information. Intuitively, such
information allows us to build a character-based token model that can
predict whether an (unseen) English word looks like an entity type or
not. The performance of this experiment was comparable to that of the
mixed-case English text plus capitalization feature in Experiment 4.
Experiment 4 suggested that capitalization is a very useful feature

for mixed-case text and can greatly enhance the performance of a
named entity recognition system. With token prefix and suffix infor-
mation that incorporates a character-based entity model, the system
performance is further enhanced in Experiment 5.
Up to Experiment 5, only very simple token-based linguistic features

have been used. Despite their simplicity, these features give very signif-
icant performance enhancement. In addition, such features are readily
available for many languages, implying that they can be used in a
language-independent statistical named entity recognition system.
In Experiment 6, we added part-of-speech and text-chunking in-

formation. They only lead to a relatively small improvement. This is
because most part-of-speech information has already been captured in
the capitalization and prefix/suffix features. The chunking information
might be more useful, though its value is still quite limited.
By adding additional dictionaries, we observe a small but sta-

tistically significant improvement (Experiment 7). Some of these
dictionaries are provided by the shared tasks. One may also con-
struct dictionaries from various sources, such as certain Web sites that
contain lists of cities, countries, U.S. states, etc.
Clearly, the construction of extra linguistic features is open-ended. It

is possible to improve system performance with additional and higher-
quality dictionaries. Although dictionaries are language-dependent,
they are often fairly readily available, and providing them does not
pose a major impediment to customizing a language-independent sys-
tem. However, for more difficult cases, it may be necessary to provide
high precision, manually developed rules to capture particular linguis-
tic patterns. Language-dependent features of this kind are harder to
develop than dictionaries and correspondingly pose a greater obstacle
to customizing a language-independent system. We have found that
such features can appreciably improve the performance of our system.
A related idea is to combine the outputs of different systems. Fortu-

190 7. Case Studies

Figure 7.13. Screenshot of a Document with Highlighted Named Entities

nately, our experiments indicate that special-purpose patterns may not
be necessary for quite reasonable accuracy.
The performance of a named entity recognition system is sensitive to

the data source and language. For example, German can be a more dif-
ficult language for named entity recognition. However, features listed
in this case study are useful for these different languages as well.

System Deployment
A named entity recognition system can be deployed in at least two
ways. The named entities can be extracted from the input text and
provided as output. The user may decide how to use the named entities.
For example, some of them may be the basis for indexing documents
in a database. Another way of deploying the system is within a doc-
ument browser. The named entities recognized by the system are
annotated for rapid perusal. For example, they might be highlighted,
as in Figure 7.13, or perhaps color-coded.
Typically, for a different language, a different classifier would be

necessary. The methodology for obtaining the classifier would be the
same: obtain training and validation data; extract features; train the

7.8 Customized Newspapers 191

classifier; and tune the classifier using validation data. The features
extracted may differ somewhat across languages. For the CoNLL-2003
data, we found that system performance was enhanced significantly
with simple local linguistic features and more sophisticated features,
although helpful, yielded much less improvement than might be ex-
pected. Since the simple features are available for many languages, it
suggests the possibility of setting up a language-independent named
entity recognition system quickly so that its performance is close
to a system that uses much more sophisticated, language-dependent
features.

7.8 Customized Newspapers

The Problem
The Web has an abundance of news sources. These sources often up-
date in real time with breaking news. Similar events are sometimes
reported from different perspectives. An individual tapping into these
sources takes on an editorial role in deciding what is relevant or use-
ful. With experience, a person may get better at figuring out which
sites to access for which stories. Still, considerable time is spent sim-
ply visiting different sites and sifting through repetitive material.
The problem is to devise a system that fully automates this edito-
rial process, composing a customized newspaper from multiple news
sources.

Solution Overview
An overall solution is shown in Figure 7.14, which summarizes the
different components involved. The key components of the solution are:

• AWeb crawler that visits newsWeb sites and retrieves documents
of interest.

• A categorizer that classifies articles into several key topics known
in advance. For instance, the categories may be entertainment,
government, finance, sports, and international.

• A document clusterer that clusters the documents within each
category based on their similarity with each other. It may also
take into account other attributes of the documents such as time,
source, labels, etc.

192 7. Case Studies

Layout
Articles

Select Exemplar
 Articles

Newspaper

Cluster and
Categorize Articles

Collect Articles
from Web

Figure 7.14. Automating Customized News

• An exemplar selector that selects key articles within each
category and selects other relevant articles on the same
subtopics.

• A layout program that uses the relative importance of the various
documents and categories to decide on the overall layout of the
newspaper.

Note that several variations of this solution are possible. For exam-
ple, a more sophisticated version might involve merging the articles
together. Another version might involve creating new headlines.

Methods and Procedures
The first step is getting the news articles. There are many news Web
sites that can be visited, and articles can be retrieved using a Web
crawler. One issue in this step is cleaning up the articles and removing
extra HTML links, Javascript, advertisement links, etc.
Articles are then vectorized. The vectors are the basis for many

of the subsequent steps. For vectorization, it is usually sufficient to
use around a few hundred terms (with the highest tf-idf weights, for
example) to describe the articles. Stopwords may be eliminated, and
synonyms and spelling errors should be taken into account. When doc-
uments vary greatly in length, normalization provides a common basis
for comparison and prevents inappropriately high similarity measures
for longer documents.
Once document vectors are obtained, they can be categorized and

clustered. Besides the usual terms that capture document content,
additional information may be used such as the time stamp of the
document. Instead of comparing document vectors directly, it’s prefer-

7.8 Customized Newspapers 193

able to work with topic vectors instead. Topic vectors can be created in
advance for the usual news categories (such as World, Sci/Tech, U.S.,
Sports, Business, etc.), and comparisons with such topic vectors can
assist in categorizing and clustering. For instance, one can create a
topic affinity vector, that measures the similarity of a document vector
to the various topic vectors. Then, instead of comparing two document
vectors directly, one can compare their topic affinity vectors instead.
The more similar these vectors, the more likely that they are of the
same topic.
How are topic vectors created in the first place? They can be created

from Web directories, which consist of articles categorized into various
topics. Using the terms from all the documents for a topic, a topic
vector can be generated.
This requires that topics be known beforehand. Typically, there are

several key topics of interest, such as entertainment, government,
finance, and sports. Names of new topics can also be generated by
examining the words in a cluster, ranking them by weight, and taking
the top few words as descriptive of the articles in that cluster.
Documents for each category can be filtered for relevance and user

preferences. Those deemed unsuitable can be discarded. When many
documents are similar, a few may be selected as exemplars. In this
stage, the document sources may also be taken into consideration. An
article from one news source may be given a higher weight than that
from another source.
Once the articles are selected, they need to be presented in Web

pages. Automated layout can be quite tricky if done from scratch. But
default templates may be used as a starting point and the layout modi-
fied based on the importance and newsworthiness of the articles. Some
articles may have pictures attached to them, and these too need to
be considered by the layout algorithm. Unlike the layout on fixed-size
pages, layout for Web pages is more flexible, with the primary concern
being the hierarchical organization of links to the articles.

System Deployment
Automated editing allows for huge savings in manpower and increased
responsiveness to evolving news. If a wide range of news sources is
considered, the system allows the bringing together of sharply different
perspectives on the same event.
Customized newspapers can be deployed in very diverse scenarios

by including user preferences. In the simplest form, users can specify

194 7. Case Studies

news categories of interest. For example, a user may be interested only
in sports and entertainment news. Or one may customize a regional
news section based on the region of interest. More complex personal-
izations may affect the delivery of the news itself. For example, one may
specify e-mail delivery of hourly news updates on certain topics. At an
extreme, customized news may take the form of a market intelligence
report in which articles about specific companies at the time of certain
events (such as sharp stock price changes) are collected together.

7.9 Historical and Bibliographical Remarks

As with most data-mining case studies, key details of deployed systems
are closely held trade secrets. The systems for which more details are
known have roots in published work from universities or research labs,
but the crucial reworkings for successful deployment often are not
made available. Not many companies are interested in helping their
competitors match their system’s performance!
A market intelligence system is described in [Weiss and Verma,

2002]. An evaluation of the lightweight document-matching algorithm
is provided in [Weiss et al., 2000b]. Generating model cases by docu-
ment clustering is discussed in [Weiss et al., 2000a]. Details of text
categorization experiments with the Reuters data can be found in
[Damerau et al., 2004]. The version of e-mail filtering described is from
the open-source Mozilla v1.3; the latest version can usually be obtained
from http://www.mozilla.org. Its spam classifier is based on an algorithm
by Paul Graham [Graham, 2003] (see also http://www.paulgraham.com).
Most well-known search engines are based on proprietary techniques.
An innovative clustering and refinement strategy is implemented in
the Teoma search engine (see http://www.teoma.com). An overview of
the CoNLL-2003 shared task, with details of performance results, is
available in [Sang and De Meulder, 2003]. A detailed analysis of the
impact of features can be found in [Zhang and Johnson, 2003].
Customized newspapers based on user preferences have been around

for quite a while. Almost all online newspapers allow some degree
of customization. The simplest instance of this is where the weather
report can be for a user-specified city. Mostly though, the customiza-
tions are such that they restrict or selectively show parts of the
full newspaper. The content and layout are still mostly done by hu-
mans. A system that is organized somewhat along the lines of our
case study is Newsblaster, developed at Columbia University [McK-

7.9 Historical and Bibliographical Remarks 195

eown et al., 2002]. A view of Newsblaster in action can be found at
http://newsblaster.cs.columbia.edu at the time of writing. Google News
(http://news.google.com) is an incarnation of a fully automated newspa-
per in which the editing and news selection are done by programs.
It uses proprietary procedures to compose a meta-newspaper for a
fixed number of topics with exemplar links chosen as key articles and
secondary links to other articles on the same topic.

8

Emerging Directions

Our principal objective is predictive text mining. The wealth of re-
search literature for text mining encompasses a much wider range of
topics than is presented here. At the same time, the research litera-
ture deals with each of these topics in great depth, describing many
alternatives to the approaches that we have selected. Our description
is not a comprehensive review of the field. We have used our judgment
in selecting the basic areas of interest and the fundamental concepts
that can lead to practical results. For example, thousands of papers
have been written on classification methods. We picked our favorites
for text mining.
Perusing the research literature, one sees a number of topics that

we have not covered. Many of these may be quite interesting and of
practical importance, but they are not special to text mining. They are
general issues of data mining. Other topics are clearly related to text
mining but are only weakly related to prediction.
We don’t want to ignore these other topics. Yet, we will not cover

them prominently because of the aforementioned rationale. As before,
we make our selections of important topics. Although text mining is
far from a mature field, some new areas of application are emerging.
Several years from now, techniques for applying these concepts will be
routine. For others, progress may be made, but they will remain on a
research agenda.

198 8. Emerging Directions

8.1 Summarization

Now that documents are in digital form, they are amenable to transfor-
mations that are not expected for paper documents. You are presented
with a lengthy document or a collection of documents on the same topic.
Instead of reading these documents, you might request a summary.
You may eventually read the full version. First, you want to see the
short version. How long is the short version? Surprisingly, there are
techniques that produce customized summarizations. You specify the
size, for example 10% of the originals, and the programs will comply.
A principal technical approach to summarization is closely aligned

with clustering. A cluster consists of similar documents. The clusters
are considered classes of documents having the same topic. We could
envision several situations where a summary might be useful:

• single document

• multiple documents with the same topic

• an automatically assembled cluster of documents

The common theme is that one or more documents are presented,
and from these documents a summary is produced. Don’t let your imag-
ination run wild thinking that a program must rewrite the originals.
Our summary will be word-for-word sentences extracted from the given
documents. The task is one of selecting the right sentences. This can
be done by invoking a process that we described in Chapters 5 and 7 for
summarizing the results in a cluster. Figure 8.1 describes that situa-
tion, where a cluster is summarized by one (or more) of its constituent
documents. The extract is selected to be representative of the cluster,
a summary of the shared topic.
Figure 8.2 illustrates the extended task of producing a summary

by selecting sentences from the given documents. Instead of selecting
a single representative document, the summarizing program extracts
sentences from the documents, merging them into a single summary.
How did we previously select the exemplar for a clustering proce-

dure? Let’s assume we used k-means. We then have a mathematical
summary of the cluster, expressed in terms of the means, such as the tf-
idf of each word in the dictionary. One simple procedure is to select the
document that is most similar to the virtual document represented by
the mean vector. We can use a similar procedure for selecting sentence
extracts for summarization. Figure 8.3 gives the steps for one promi-
nent summarization method. Using similarity measures relative to the

8.1 Summarization 199

Documents to be Summarized

D6
D4

D6D7 D10

D12

Exemplar

Figure 8.1. Summarization by Exemplar Selection

S9.

S4.

S10.

S8.S6.
S7.

S5.

S2.
S1.

S1.
S6.
S4.

S3.

Documents to be Summarized

New Summary
Document

Figure 8.2. Summarization by Merging Documents

mean vector, sentences are added to the summary. These sentences are
not modified and maintain their relative positions within the original
document. Multiple documents also keep their order relative to their
time stamp, with extracts from the earliest time stamp appearing first.
Redundancy is checked by pairwise similarity scoring. Instead of a
pure similarity score, a weighted score that includes other factors may
be used. These include the position of the sentence in the document
and the length of the sentence. For example, sentences appearing at
the beginning of the document may be weighted higher than those in
the middle. Given a percentage threshold, sentences are added until
the threshold is exceeded.
This procedure can be applied to multiple documents on a single

topic or just one long document. The resulting summary is a set of sen-
tences extracted from the full documents. Originally, summarization
methods were developed using a fairly detailed linguistic analysis. But
once again, we see that automated methods using procedures evolv-
ing from clustering and classification can be effective in producing a
satisfactory result while circumventing any need for a deep linguistic
understanding of text.

200 8. Emerging Directions

Figure 8.3. A Summarization Algorithm

A related summarization method extracts sentences using cluster-
ing. The idea can be described as follows. We partition sentences from
a document (or multiple documents) into a number of clusters such
that sentences within each cluster are similar. Then we create the
mean vector for each cluster. Similar to the procedure in Figure 8.3,
one or more sentences can be selected that are closest to the mean
vector from each cluster as its representative sentences. The selected
representative sentences from the clusters are displayed as the desired
summarization.
In addition to the methods above, topic sentences can also be selected

based on some linguistic heuristics. A number of ideas have been pro-
posed in the literature. For example, it has been noticed that sentences
that occur in a title, or either very early or very late in a document
and its paragraphs, tend to carry much more information about the
main topics. Therefore we can select sentences simply based on their
positions in an article. Another idea is to use linguistic cue phrases
such as in conclusion, the most important, or the purpose of the article,
which often indicate important topic sentences.
Although linguistic heuristics such as those described above are

helpful for sentence extraction, it is often difficult to determine the
relative importance of sentences that are selected based on different
heuristics. In order to facilitate a consistent ranking of sentences, a
recent trend in topic sentence extraction is to employ machine-learning

8.2 Active Learning 201

methods. For example, trainable classifiers have been used to rank sen-
tences based on features such as cue phrase, location, sentence length,
word frequency and title, etc. Given a document, we may select a pool
of top-ranked sentences based on outputs from the resulting classifier.
In order to obtain a more concise summary, an algorithm such as the
one in Figure 8.3 can be employed to eliminate redundant sentences
from the pool.

8.2 Active Learning

Prediction methods work with labeled data. We characterized cluster-
ing as a way to assign class labels to unlabeled sample data. Prediction
methods work best with well-formed goals, and that implies careful
problem design with labels clearly expressed and naturally assigned.
You define the problem and the computer solves it. Otherwise, you may
be asking the computer to define the problem, too.
Another perspective is to look at labels as an expense. We can exert

an effort to obtain them, but we need not lead a spendthrift lifestyle. If
we need labels, we will “purchase” them. If we have a predictor that is
performing perfectly, why go out and get additional labeled data?
Active learning attempts to reduce the number of labeled docu-

ments needed for training. The assumption is that labels are expensive,
and documents will arrive unlabeled. We can ask someone to label
the incoming document, but that will entail an expense. Figure 8.4
illustrates this view of labeling and its effect on the learning process.
How is the decision made to request a label? That is easy for pre-

diction methods that assign a probability to their decisions. They will
make a request for a label when they are unsure about their decision. If
they have high confidence, they discard the new document. The process
does not have to take place in real time. One can collect a number of
documents that cannot be classified with confidence, and a request is
later made to label them. The decision to request a label is made as
follows for a new unlabeled document:

1. Classify the document using the current decision model. Let C be
the assigned category.

2. If Pr(C) < threshold, request a label; otherwise, ignore the
document.

The procedure above can be applied iteratively. Instead of using a
predetermined threshold, in practice one can set it so that a small

202 8. Emerging Directions

Unlabeled
New Example

Small Sample
of Labeled Data

Predictor

Active Learner

Label Example Skip Example

Decision

Figure 8.4. Active Learning and Labeling

number of least confidently predicted documents are returned. After
adding these newly labeled data into the training set, we retrain the
classifier. We can then repeat the procedure until a desired accuracy is
attained. One potential issue with this method is that similar data are
likely to be selected (or ignored) simultaneously. The problem can be
alleviated by randomizing the data selection process. For example, at
each iteration, we may use a relatively small pool of randomly selected
unlabeled data.
Even if the learning algorithm does not assign probability estimates

to its decisions, the active-learning procedure can still be applied as
long as we can estimate how confident its decisions are. For example, if
the decision of a learning method is based on voting many classifiers,
then the degree of agreement among the classifiers can be regarded as
a measure of confidence.
Experimenting with text categorization and with some numerical

data-mining applications, researchers have found that active learning
can often drastically reduce their overall sample size while achieving
results comparable to training on the full set of labeled documents.

8.3 Learning with Unlabeled Data

Unlabeled documents can be useful for prediction even when labels will
never be assigned. For example, global dictionary compilations and tf-
idf computations do not need labeled data. Some prediction methods
may use pooled covariance matrices that can be computed without
labels. A general idea is to find features in unlabeled data. We may dis-
cover patterns from unlabeled data and use such patterns as features
input to the learning algorithm. If such patterns exist, then unlabeled
data can help.

8.4 Different Ways of Collecting Samples 203

Amore open question is whether the assignment of labels can be sim-
ulated by programs to improve predictive results. One proposal, called
cotraining, is based on learning and applying two different classifiers
(or one classifier on two independent sets of features) and computing
their confidence measures. The procedure is related to active learning.
However, at each iteration, instead of choosing the most uncertain data
to be labeled by a human, one selects data that can be labeled reliably
by one of the classifiers (according to the confidence measures) and
simply use the corresponding labels in the next iteration as if they were
the true labels. This method only works if we can indeed bootstrap clas-
sifiers this way without human intervention. The theoretical analysis
of this method is based on the assumption that labels guessed by the
algorithm are correct. However, the potential danger is that more and
more incorrectly labeled data are included in the training data, which
reduce the quality of the underlying classifiers. Promising results have
been reported for some problems with small numbers of labeled data to
start with. These experiments were performed with labeled data and
while hiding some of the labels.
Some researchers have also reported improved results by using the

following sequence of steps:

1. Train from labeled data.

2. Apply the resulting classifier to unlabeled data.

3. Add the unlabeled data and the program-assigned labels to the
training sample and retrain.

This method also has the danger of training a classifier based on
incorrectly labeled data. Although some experiments show promis-
ing results, the circumstances of improved results are not yet fully
understood.

8.4 Different Ways of Collecting Samples

Predictive methods are implemented in programs that process exam-
ples of prior experience. The examples are assembled into a single
sample and processed in one big batch. Let’s examine alternative ways
of collecting samples and processing data in smaller pieces.

204 8. Emerging Directions

8.4.1 Multiple Samples and Voting Methods
Instead of being combined in one sample, examples could be collected
from different samples. We have already noted that the fundamental
approach to sampling for prediction assumes that documents are i.i.d.,
independent and identically distributed. We know documents change
over time, but within a narrow window, the population may be rela-
tively stationary. We might take a sample periodically, and instead of
retraining a classifier, we can induce a new one from the new sample.
Thus we would have a different classifier for each sample, and we
expect that the samples are from the same population. This simpli-
fies our learning task, but how do we make decisions from so many
classifiers? We can apply each of the classifiers to a new document and
then tabulate their votes. Figure 8.5 illustrates the overall process. In
the simplest form, all votes are equal, and the class with the most votes
wins the election. More complex versions may use weighted voting.
Numerous sampling schemes have been developed to simulate mul-

tiple samples from just a single sample. This is done by resampling or
weighting the examples in the training data. Some techniques, such
as bagging, randomly draw examples with replacement (i.e., repeats)
from a single sample. Another technique, boosting, is a sampling ap-
proach with a memory. It samples the examples that are misclassified
with a higher weight than the correctly classified examples. All these
variations result in multiple classifiers, which are voted, either equally
or by weighted voting.
The results for these methods on benchmark data are among the

best. Yet, for practical applications, these methods are less interest-

Sample N

New Case

Prediction
for new case

Predictor N

Sample 2

Sample 1

Predictor 2

Predictor 1

Vote N
Predictions.

.

.

.

.

.

Figure 8.5. Voting Predictors from Multiple Samples

8.4 Different Ways of Collecting Samples 205

ing than alternatives. The linear methods described in Chapter 3 also
achieve excellent results with a single straightforward solution. The
voting methods can take a long time to train and apply, and their
results are not easy to understand. On the positive side, they may find
classifiers that cover the rare instances that are overlooked by single-
sample methods. Reading and comprehending text is a task we all
perform. We are reluctant to transform this effort into something that
is less well-understood, especially when other approaches are equal to
the task.

8.4.2 Online Learning
A sample consists of one or more (usually many) examples. For real-
time learning, we consider a more elemental view of data. Instead of
learning from a sample, a program learns from each example as it
arrives. Figure 8.6 illustrates the online-learning view of data. A small
number of labeled documents are collected in a sample, and a classifier
is induced from the data. As new labeled data arrive, the classifier
immediately updates itself to reflect the new information.
How hard is it to update a prediction model? For some methods, the

task is trivial. For example, the predictor that uses the class mean
vector needs minor computations for the new means. The naive Bayes
model just needs to update its class probabilities. Many parametric
methods have straightforward adjustments. Other methods, such as
decision rule induction, were designed for batch processing and can be
highly variable when slight changes are made.
The environment for real-time learning can change from that de-

scribed in Figure 8.6. We may still want to update every time a new
document arrives. If our documents are time-sensitive, it may be de-
sirable to discard older documents, too. The situation may share many
of the characteristics of a time series, where we process documents
arriving within a fixed window of time.
Online-learning methods can also be used to train linear classifiers.

As we have mentioned before, linear classifiers are well-suited for text-
mining applications since they can take advantage of large numbers of
features. A popular online method for linear classification is the simple
and elegant perceptron algorithm. This method is mistake-driven in
that it updates the weight vector when the prediction with the current
weight makes a mistake.
Using the notation in Chapter 3, we assume that the weight vector

is w and the i-th training data are (xi, yi), where xi is the feature vector

206 8. Emerging Directions

Initial
Sample

Wait for New
Labeled Document

Predictor

Online Learner

Build
Predictor

Update Predictor

Figure 8.6. Online Learning

and yi is a binary label with value ±1. We initialize the algorithm with
w = 0. Then it goes through the data from i = 1,2, After examining
the i-th data, the algorithm does nothing if w · xiyi > 0 (which means
that it has made a correct prediction). However, if w · xiyi ≤ 0 (that is,
the current weight vector has made a mistake on the i-th data), then it
updates the weight vector w simply as w→ w + xiyi.

One can show that if the training data are linearly separable (that is,
there exists a weight vector w∗ such that w∗ · xiyi > 0 for all i), then by
going through the training data repeatedly, the perceptron algorithm
will find a weight vector that separates the data in a finite number of
steps.
Despite its simplicity, the perceptron algorithm works quite well for

many problems. However, its performance is usually lower than more
sophisticated linear scoring methods such as the one we described in
Chapter 3. Practitioners also find that instead of using the final weight
vector when the algorithm is stopped, one often achieves better per-
formance by averaging weight vectors obtained during all steps of the
algorithm.

8.4.3 Cost-Sensitive Learning
For binary classification, two types of errors occur: false positives and
false negatives. Some learning methods treat these errors equally and
try to minimize the overall error rate. Text-mining applications are
very sensitive to the tradeoff of these two errors relative to predicting
the positive class. Measures of precision and recall capture the dis-
tinction between the two types of errors. Typically, a minimum level
of precision is required. Increasing one of these measures comes at
the expense of the other. The natural way to move the direction of
these measures is to assign a fixed cost to errors. Increasing the cost
of error for missing a document belonging to the positive class will

8.4 Different Ways of Collecting Samples 207

increase recall. Similarly, increasing the cost of an error for a negative-
class document may increase precision. Increasing the cost of error for
missing positive documents is equivalent to increasing the number of
examples for that class. Most text-mining programs have some variable
that can be varied to produce different levels of precision and recall. It’s
up to the application expert to decide whether the overall results are
satisfactory and to find the best compromise in precision and recall.
Varying the costs of error can sometimes improve overall predictive

accuracy. Learning programs do not employ optimal algorithms, and
tuning learning parameters can have a beneficial effect. Increasing the
implied number of examples for the positive class by increasing the
cost of errors of omission might force the learning program to be more
ambitious in pursuing rules for its class. For the Reuters benchmark,
our rule induction program has better accuracy by about 1% when the
initial cost of error is doubled for all indexed topics.
Almost all applications of predictive text-mining methods have been

for classification. One can readily envision applications where the pre-
diction is measured in numerical terms such as gains or losses. For
example, one could attempt to predict the net gain in stock prices based
on sampling newswires and other documents. Predicting the gain or
loss for an individual stock is a regression application. A sample of
newswires for companies of interest would be collected along with the
change in their stock price for some fixed period following the release
of the newswire. Using text combined with a time-sequenced measure-
ment, a learning method would try to find patterns that identify an
upcoming change in a stock price.
Measures more complex than cost of errors might be used. Not only

might errors be penalized, but positive decisions might be reinforced.
We could assign gains and losses to each decision. The actual gain or
loss depends on whether the decision is correct, and the magnitude of
the profit or loss is not necessarily uniform for each example.

8.4.4 Unbalanced Samples and Rare Events
Many learning methods tend to be timid about learning rare events. In
that situation, the positive class is overwhelmed by the sheer number
of negative events. Unless the two classes can be readily distinguished
by one or two key words, the method may give up and determine that
it’s best not to predict that class. If this occurs, one should try to re-
balance the class examples for training. A typical rebalance is an equal
number of examples in each class, where all positive class examples are

208 8. Emerging Directions

used along with a random selection of the negative examples. Testing
can be done on new cases without any correction for rare events. This
rebalancing has much in common with the cost adjustments described
in the previous section. It may be important to detect rare events, even
at the expense of increased error on the negative side. Moreover, given
the suboptimality of learning methods, increasing the prevalence of the
positive cases can jumpstart the method into looking more extensively
for solutions.

8.5 Question Answering

When the Web began to grow rapidly and the number of users who
wanted to search the Web also grew rapidly, interest in simple means
of query, such as natural language (NL) query, grew also. Most systems
that billed themselves as NL systems were actually key word systems
in disguise. They stripped the NL input of function words (such as
“the” and the like) and ran a conventional search using the remaining
content words.
One of the more popular NL query systems was Ask Jeeves, a com-

pany that has survived the Internet business collapse. According to
comments in response to a patent infringement suit brought by two
MIT professors, the system worked in the following way. First, the
question is tokenized to find key terms, and then the question is parsed
for word meaning by semantic and syntactic networks that were built
by Ask Jeeves. After the question is tokenized, it is reorganized into a
structure compatible with question templates developed by Ask Jeeves.
At this point, the service provides the user with a set of potential
locations for the answer to the question.
From the Ask Jeeves example, we can see that the goal of question

answering is to find the answer from a collection of text documents
to questions in natural language format. Current systems can answer
questions such as “In what country did the game of croquet originate?”,
or “What was the length of the Wright brothers’ first flight?”. The an-
swer to such questions can be a short passage of text or a sentence that
contains the answer. The potential answer phrases can also be marked
up in the presentation of the results.
A typical question-answering system, illustrated in Figure 8.7,

contains the following comments:

• answer type classification

8.5 Question Answering 209

Answer Type
Answer Type
Classification

Candidate
Sentences

Question
Information
Retrieval

Ranked Sentences
with

Marked Answer Entity

Answer
Selection

Answer Entity
AnnotationDatabase

Figure 8.7. Question Answering System

• answer entity annotation

• information retrieval

• answer selection

The answer type classification module matches the incoming ques-
tion against a set of predefined templates. These templates determine
what kind of information we are looking for. Accordingly, the question
will be assigned a set of potential answer types such as length, location,
etc. Meanwhile, the underlying document collection is pre-annotated
with the answer types using a named entity tagger. The annotated sen-
tences will be matched against the expected answer type in the answer
selection module to rank and narrow down the potential choices. The
information retrieval (IR) module selects a set of sentences that po-
tentially contain the answer from the underlying document collection.
This is done by using the search technology. However, since the same
question can often be asked in different ways, the IR module includes
a query expansion stage, which maps key words in the question into
synonyms or equivalent linguistic forms. The answer selection module
ranks candidates found by the IR module and marks the desired an-
swer entities. In order to determine whether a sentence or text passage
is the desired answer to the question, one may take various heuris-
tic information. Either a hand-crafted system or a machine-learning
system can be used for this purpose.

210 8. Emerging Directions

8.6 Historical and Bibliographical
Remarks

Text summarization has been a topic of interest since the early days
of text processing under the name of “automatic abstracting” [Luhn,
1958]. As the amount of online text has continued to grow, the ac-
tivity has become more organized. In May 1998, the U.S. government
completed the TIPSTER Text Summarization Evaluation (SUMMAC),
which was the first large-scale, developer-independent evaluation of
automatic text summarization systems. SUMMAC, it was claimed, es-
tablished definitively in a large-scale evaluation that automatic text
summarization is very effective in relevance assessment tasks. An
overview of the present state of the art can be found in the papers
in [Radev and Tenfel, 2003]. Multidocument summarization is also
discussed in [Radev et al., 2002].
Due to the difficulty of obtaining a large amount of labeled data

in many applications, there has been increasing interest in learn-
ing with unlabeled data. Active learning is related to an old idea
in statistics called sequential design. It has been studied in the
machine-learning community both theoretically and empirically. The
uncertainty-sampling method appeared in [Lewis and Catlett, 1994].
Approaches that combine active learning with boosting and voting
classifiers are given in [Liere and Tadepalli, 1997] and [Iyengar et al.,
2000]. Many empirical studies suggested that active learning improves
the learning performance, but the method still requires significant hu-
man efforts in data labeling. It only reduces the amount of human labor
by focusing on the most informative samples. Ideally, one hopes to take
advantage of unlabeled data without any additional human effort. A
number of proposals appeared [Nigam, 2001]. The idea of cotraining
was proposed in [Blum and Mitchell, 1998]. Subsequent experiments
suggested that the method works for some problems but not always.
As argued in [Zhang and Oles, 2000], the usefulness of unlabeled data
depends on the underlying probability model that generates the data.
For certain problems, procedures that simulate the unknown labels
can be harmful due to the potential errors introduced into the training
data.
Boosting techniques for text categorization are discussed in

[Schapire and Singer, 2000]. A variation of voted multiple decision
trees was used in [Weiss et al., 1999] to produce one of the best reported

8.6 Historical and Bibliographical Remarks 211

results for text categorization on the standard Reuters benchmark
data.
The perceptron method was first analyzed by Rosenblatt [Rosen-

blatt, 1962]. It was shown that the algorithm makes no more than
a certain number of mistakes when the training data are linearly
separable. This result has motivated many recent developments in
the computational learning theory community (COLT), where other
online algorithms with provable mistake bounds were proposed. A
particularly interesting algorithm is the Winnow method proposed by
Littlestone [Littlestone, 1988]. Instead of the additive update rule in
the perceptron algorithm, the Winnow method uses a multiplicative
update scheme. Despite its simplicity, the perceptron method can be
quite effective. It has been applied to many applications, including
some natural language processing problems [Collins, 2002].
During the 1970s and early 1980s, natural language question an-

swering was an active research area. Questions were directed at
formatted databases rather than text archives. Much of the research
was devoted to building systems that could be customized by a user to
a new database [Damerau, 1985]. Unfortunately, the problem proved to
be extremely difficult to solve, and researchers moved to other topics.
However, the area revived in the late 1990s due to its potential appli-
cations in Web searching. Beginning in 1999, the National Institute of
Standards and Technology (NIST), which had been sponsoring a Text
Retrieval Conference (TREC), added a track for question answering.
In the first conferences, participants returned either 50- or 250-word

passages that supposedly contained the answer. In some scientific con-
ferences, participants return only a small snippet of text as the answer
to a question, along with a confidence rating for the answer. In 2002,
the best system achieved a recall of 80% with a precision of 59%. Two
other systems had even better recall but with precision in the low
20% range [Voorhees and Buckland, 2002]. In 2003, NIST added an
additional track, High Accuracy Retrieval from Documents (HARD),
in which participants could leverage additional information about the
searcher or the search context through techniques such as passage
retrieval and using very targeted interaction with the searcher. Details
of individual systems can be found in the proceedings of the TREC
conferences, available on the NIST Web site.
The Ask Jeeves techniques for question answering are described in

[Seshasai, 2000].

Appendix: Software Notes

We have examined a number of different techniques for text mining,
and some methods have been described in algorithmic form. Un-
doubtedly, readers will want to try these methods to gain firsthand
experience with them. Others might be interested in applying the tech-
niques to their own data. In the preceding chapters, references have
been made to software implementations accompanying this book.
The software is provided by Data-Miner Pty. Ltd. A free single-user

license is included for those who have purchased the book. These notes
include a brief description of the software, provide details of the hard-
ware/software requirements, and give instructions on how to get the
software. Full details are available online at Data-Miner’s Web site
(http://www.data-miner.com).

A.1 Summary of Software

The software is provided in two parts. The first part is the text-mining
software kit (TMSK), which includes routines for preprocessing XML-
based text documents. The second part is a complete package for rule-
based text classification (RIKTEXT). Both RIKTEXT and TMSK share
the same data format for vectors. TMSK can be used to prepare data
for RIKTEXT.
Table A.1 summarizes the tasks accomplished by the software. The

table also lists the section of the book where the underlying algorithms
are discussed. All the key tasks discussed in the book are covered.
Sample data are provided and the documentation describes how users
may specify the XML format of their own input documents. The doc-

214 Appendix: Software Notes

Table A.1. Tasks Accomplished by the Accompanying Software

Tokenization Section 2.3
Stemming Section 2.4

Text to Vectors Dictionary Creation Section 2.5
Vector Generation Section 2.5
End-of-Sentence Detection Section 2.6
Rule-based Classifiers Section 3.4.3

Prediction Naive Bayes Section 3.4.4
Linear Models Section 3.4.5

Information Retrieval Document/Query Matcher Section 4.7
Finding Structure k-means Clustering Section 5.2.1
Information Extraction Named Entity Identification Section 6.2.2

umentation also lists existing sources of XML documents compatible
with the software.
Except for rule-based classification, which is implemented as RIK-

TEXT, everything else is included in TMSK. RIKTEXT complements
TMSK by providing methods for constructing and using rules for docu-
ment classification. The input data format for RIKTEXT is identical to
that of the classification methods in TMSK. However, RIKTEXT has a
number of options that are especially helpful for rule-based systems.

A.2 Requirements

Hardware
• TMSK is available for any hardware that has a Java interpreter.

• RIKTEXT is provided for Intel-compatible (x86) machines.

Software
• TMSK uses Java version 1.3.1 or higher. Its modules are run as

Java applications with command-line arguments.

• RIKTEXT runs on Linux or Windows. Most modern Linux instal-
lations are compatible with RIKTEXT. On Microsoft Windows,
RIKTEXT is run in a Command-Prompt or MS-DOS window.

A.3 Download Instructions 215

A.3 Download Instructions

A free single-user license is provided to those who have purchased the
book. The software is provided by Data-Miner Pty. Ltd. and can be
downloaded from their Web site. Visit http://www.data-miner.com and
follow the links for TMSK and RIKTEXT. The single-user license can
be viewed there, and users must accept its terms and declare that
they have purchased the book prior to download. Documentation for
the software is available online and can be reviewed prior to download
as well. After accepting the terms of the software, a user name and
password must be provided to get the software. The user name is
tmskriktext and the password is the book’s barcode number, a 12-
digit string, beginning with 7, just below the barcode on the back cover.
The user name is case-sensitive. After downloading the software, follow
the installation instructions provided online.

References

[Apté et al., 1994] C. Apté, F. Damerau, and S. Weiss. Automated
learning of decision rules for text categorization. ACM Transactions
on Information Systems, 12(3):233–251, 1994.

[Banerjee and Langford, 2004] A. Banerjee and J. Langford. An objec-
tive evaluation criterion for clustering. In Proceedings of KDD-2004,
ACM Press, New York, NY, 2004.

[Bekkerman et al., 2003] R. Bekkerman, R. El-Yaniv, N. Tishby, and
Y. Winter. Distributional word clusters vs. words for text cate-
gorization. Journal of Machine Learning Research, 3:1183–1208,
2003.

[Bikel et al., 1997] D. Bikel, S. Miller, R. Schwartz, and R. Weischedel.
Nymble: A high-performance learning name finder. In The Fifth
Conference on Applied Natural Language Processing, pages 194–201,
ACM Press, New York, NY, 1997.

[Bikel et al., 1999] D. Bikel, R. Schwartz, and R. Weischedel. An
algorithm that learns what’s in a name. Machine Learning,
34(1—3):211–231, 1999.

[Blum and Mitchell, 1998] A. Blum and T. Mitchell. Combining la-
beled and unlabeled data with co-training. In Proceedings of the
Eleventh Annual Conference on Computational Learning Theory,
pages 92–100, ACM Press, New York, NY, 1998.

[Borthwick, 1999] A. Borthwick. A Maximum Entropy Approach to
Named Entity Recognition. Ph.D. thesis, New York University, 1999.

[Breiman, 1999] L. Breiman. Prediction games and arcing algorithms.
Neural Computation, 11:1493–1517, 1999.

218 References

[Brill, 1995] E. Brill. Transformation-based error-driven learning
and natural language processing: A case study in part-of-
speech tagging. Computational Linguistics, 21(4):543–565, 1995.
http://www.cis.upenn.edu/∼adwait/penntools.html.

[Califf and Mooney, 1998] M. Califf and R. Mooney. Relational learn-
ing of pattern-match rules for information extraction. In Working
Notes of AAAI Spring Symposium on Applying Machine Learning
to Discourse Processing, pages 6–11, AAAI Press, Menlo Park, CA,
1998.

[Cardie and Wagstaff, 1999] C. Cardie and K. Wagstaff. Noun phrase
coreference as clustering. In Proceedings of the Joint SIGDAT Con-
ference on Empirical Methods in NLP and Very Large Corpora, pages
82–89, ACL, East Stroudsburg, PA, 1999.

[Charniak, 1997] E. Charniak. Statistical techniques for natural
language parsing. AI Magazine, 18(4):33–43, 1997.

[Chiang, 2000] D. Chiang. Statistical parsing with an automatically-
extracted tree adjoining grammar. In Proceedings of the ACL 2000,
pages 456–463, ACL, East Stroudsburg, PA, 2000.

[Cohen, 1996] W. Cohen. Learning rules that classify email. In Pro-
ceedings of the AAAI Spring Symposium on Machine Learning in
Information Access, AAAI Press, Menlo Park, CA, 1996.

[Collins, 2002] M. Collins. Discriminative training methods for hidden
Markov models: Theory and experiments with perceptron algo-
rithms. In Proceedings of EMNLP’02, ACL, East Stroudsburg, PA,
2002.

[Craven and Slattery, 2001] M. Craven and S. Slattery. Relational
learning with statistical predicate invention: Better models for
hypertext. Machine Learning, 43:97–119, 2001.

[Cutting et al., 1992] D. Cutting, D. Karger, J. Pedersen, and J. Tukey.
Scatter/Gather: A cluster-based approach to browsing large docu-
ment collections. In Proceedings of SIGIR-92, pages 1–12, ACM
Press, New York, NY, 1992.

[Damerau et al., 2004] F. Damerau, T. Zhang, S. Weiss, and N. In-
durkhya. Text categorization for a comprehensive time-dependent
benchmark. Information Processing and Management, 40(2):209–
221, 2004.

[Damerau, 1985] F. Damerau. Problems and some solutions in
customization of natural language database front ends. ACM
Transactions on Information Systems, 3(2):165–184, 1985.

References 219

[Darroch and Ratcliff, 1972] J. Darroch and D. Ratcliff. Generalized
iterative scaling for log-linear models. The Annals of Mathematical
Statistics, 43:1470–1480, 1972.

[Dempster et al., 1977] A. Dempster, N. Laird, and D. Rubin. Maxi-
mum likelihood from incomplete data via the EM algorithm. Journal
of the Royal Statistical Society Series B, 39(1):1–38, 1977. With
discussion.

[Dhillon and Modha, 2001] I. Dhillon and D. Modha. Concept decom-
positions for large sparse text data using clustering. Machine
Learning, 42(1):143–175, 2001.

[Dumais and Chen, 2000] S. Dumais and H. Chen. Hierarchical clas-
sification of web content. In Proceedings of the 23rd ACM
International Conference on Research and Development in Infor-
mation Retrieval, pages 256–263, ACM Press, New York, NY,
2000.

[Earley, 1970] J. Earley. An efficient context-free parsing algorithm.
Communications of the ACM, 13(2):94–102, 1970.

[Eastman and Weiss, 1978] C. Eastman and S. Weiss. A tree algo-
rithm for nearest neighbor searching in document retrieval systems.
In Proceedings of the ACM-SIGIR International Conference on Infor-
mation Storage and Retrieval, pages 131–149, ACM Press, New York,
NY, 1978.

[Elkan, 2003] C. Elkan. Using the triangle inequality to accelerate k-
Means. In Proceedings of the Twentieth International Conference on
Machine Learning, pages 147–153, AAAI Press, Menlo Park, CA,
2003.

[Feldbaum, 1998] C. Feldbaum, editor. Wordnet: An Electronic Lexical
Database, MIT Press, Cambridge, MA, 1998.

[Florian et al., 2003] R. Florian, A. Ittycheriah, H. Jing, and T. Zhang.
Named entity recognition through classifier combination. In Pro-
ceedings of CoNLL-2003, pages 168–171, ACL, East Stroudsburg,
PA, 2003.

[Forman, 2003] G. Forman. An extensive empirical study of feature
selection metrics for text classification. Journal of Machine Learning
Research, 3:1289–1305, 2003.

[Freitag, 1998] D. Freitag. Information extraction from HTML: Appli-
cation of a general machine learning approach. In Proceedings of the
15th National Conference on Artificial Intelligence, pages 517–523,
AAAI Press, Menlo Park, CA, 1998.

220 References

[Freund and Schapire, 1997] Y. Freund and R. Schapire. A decision-
theoretic generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences, 55(1):119–139,
1997.

[Friedman et al., 2000] J. Friedman, T. Hastie, and R. Tibshirani. Ad-
ditive logistic regression: A statistical view of boosting. The Annals
of Statistics, 28(2):337–407, 2000. With discussion.

[Garfield, 1972] E. Garfield. Citation analysis as a tool in journal
evaluation. Science, 178:471–479, 1972.

[Graham, 2003] P. Graham. Better bayesian filtering.
In Proceedings of the 2003 Spam Conference, 2003.
http://spamconference.org/proceedings2003.html.

[Hastie et al., 2001] T. Hastie, R. Tibshirani, and J. Friedman. The
Elements of Statistical Learning: Data Mining, Inference, and Pre-
diction, Springer Series in Statistics, Springer-Verlag, New York,
NY, 2001.

[Hayes and Weinstein, 1990] P. Hayes and S. Weinstein. Construe/tis:
A system for content-based indexing of a database of news stories.
In Proceedings of the 2nd Conference on Innovative Applications of
Artificial Intelligence, pages 49–66, AAAI Press, Menlo Park, CA,
1990.

[Huffman, 1995] S. Huffman. Learning information extraction pat-
terns from examples. In IJCAI Workshop on New Approaches to
Learning for Natural Language Processing, pages 246–260, IJCAI,
San Francisco, CA, 1995.

[Ide and Véronis, 1998] N. Ide and J. Véronis. Word sense disambigua-
tion: The state of the art. Computational Linguistics, 24(1):1–40,
1998.

[Iyengar et al., 2000] V. Iyengar, C. Apté, and T. Zhang. Active learn-
ing using adaptive resampling. In The Sixth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pages 91–98, ACM Press, New York, NY, 2000.

[Jardine and van Rijsbergen, 1971] N. Jardine and C. van Rijsber-
gen. The use of hierarchical clustering in information retrieval.
Information Storage and Retrieval, 7:217–240, 1971.

[Jaynes, 1957] E. Jaynes. Information theory and statistical mechan-
ics. Physical Review, 106:620–630, 1957.

[Joachims, 1998] T. Joachims. Text categorization with support vector
machines: Learning with many relevant features. In Proceed-

References 221

ings of the 10th European Conference on Machine Learning,
Springer-Verlag, New York, NY, 1998.

[Jurafsky and Martin, 2000] D. Jurafsky and J. Martin. An Introduc-
tion to Natural Language Processing, Computational Linguistics,
and Speech Recognition, Prentice-Hall, Englewood Cliffs, NJ, 2000.

[Kearns et al., 1997] M. Kearns, Y. Mansour, and A-Y. Ng. An
information-thoretic analysis of hard and soft assignment methods
for clustering. In Proceedings of the Thirteenth Conference on Uncer-
tainty in Artificial Intelligence, pages 282–293, Morgan Kaufmann,
San Francisco, CA, 1997.

[Kim and Moldovan, 1995] J. Kim and D. Moldovan. Acquisition of lin-
guistic patterns for knowledge-based information extraction. IEEE
Transactions on Knowledge and Data Engineering, 7(5):713–724,
1995.

[Kleinberg, 1999] J. Kleinberg. Authoritative sources in a hyperlinked
environment. Journal of the ACM, 46(5):604–632, 1999.

[Kolcz and Alspector, 2001] A. Kolcz and J. Alspector. SVM-based fil-
tering of e-mail spam with content-specific misclassification costs.
In Proceedings of Workshop on Text Mining, IEEE ICDM-2001, IEEE
Press, Piscataway, NJ, 2001.

[Krupka and Hausman, 1998] G. Krupka and K. Hausman. IsoQuest
Inc.: Description of the NetOwl TM extractor system as used
for MUC-7. In Proceedings of the Seventh Message Understanding
Conference (MUC-7), NIST, Washington, DC, 1998.

[Kudoh and Matsumoto, 2000] T. Kudoh and Y. Matsumoto. Use of
support vector learning for chunk identification. In Proceed-
ings of CoNLL-2000 and LLL-2000, pages 142–144, ACL, East
Stroudsburg, PA, 2000.

[Lafferty et al., 2001] J. Lafferty, A. McCallum, and F. Pereira. Con-
ditional random fields: Probabilistic models for segmenting and
labeling sequence data. In Proceedings of ICML-01, pages 282–289,
Morgan Kaufmann, San Francisco, CA, 2001.

[Lappin and Leass, 1994] S. Lappin and H. Leass. An algorithm
for pronominal anaphora resolution. Computational Linguistics,
20(4):535–561, 1994.

[Lewis and Catlett, 1994] D. Lewis and J. Catlett. Heterogeneous un-
certainty sampling for supervised learning. In Proceedings of the
Eleventh International Conference on Machine Learning, pages
148–156, Morgan Kaufmann, San Francisco, CA, 1994.

222 References

[Lewis et al., 2004] D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A
new benchmark collection for text categorization research. Journal
of Machine Learning Research, 5:361–397, 2004.

[Lewis, 1992] D. Lewis. Feature selection and feature extraction for
text categorization. In Proceedings of the Speech and Natural Lan-
guage Workshop, pages 212–217, Morgan Kaufmann, San Francisco,
CA, 1992.

[Li and Yang, 2003] F. Li and Y. Yang. A loss function analysis for
classification methods in text categorization. In Proceedings of the
Twentieth International Conference on Machine Learning, pages
472–479, AAAI Press, Menlo Park, CA, 2003.

[Liere and Tadepalli, 1997] R. Liere and P. Tadepalli. Active learning
with committees for text categorization. In Proceedings of the 14th
National Conference on Artificial Intelligence, pages 591–596, AAAI
Press, Menlo Park, CA, 1997.

[Littlestone, 1988] N. Littlestone. Learning quickly when irrelevant
attributes abound: A new linear-threshold algorithm. Machine
Learning, 2:285–318, 1988.

[Luhn, 1958] H. Luhn. The automatic creation of literature abstracts.
IBM Journal of Research and Development, 2(2):159–165, 1958.

[Luhn, 1959] H. Luhn. Auto-encoding of documents for informa-
tion retrieval systems. In M. Boaz, editor, Modern Trends in
Documentation, pages 45–58, Pergamon Press, London, 1959.

[MacQueen, 1967] J. MacQueen. Some methods for classification and
analysis of multivariate observations. In Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and Probability,
pages 281–297, University of California Press, Berkeley, CA, 1967.

[Maloof, 2003] M. Maloof. Incremental rule learning with partial
instance memory for changing concepts. In Proceedings of the Inter-
national Joint Conference on Neural Networks (IJCNN ’03), pages
2764–2769, IEEE Press, Piscataway, NJ, 2003.

[Manning and Schütze, 1999] C. Manning and H. Schütze. Foun-
dations of Statistical Natural Language Processing, MIT Press,
Cambridge, MA, 1999.

[Maron and Kuhns, 1960] M. Maron and J. Kuhns. On relevance,
probabilistic indexing and information retrieval. Journal of the
ACM, 7:216–244, 1960.

[Masand et al., 1992] B. Masand, G. Linoff, and D. Waltz. Classify-
ing news stories using memory based reasoning. In Proceedings of

References 223

the 15th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 59–65, ACM Press,
New York, NY, 1992.

[McCallum and Nigam, 1998] A. McCallum and K. Nigam. A com-
parison of event models for naive Bayes text classification. In
AAAI/ICML-98 Workshop on Learning for Text Categorization,
pages 41–48, AAAI Press, Menlo Park, CA, 1998.

[McCarthy and Lehnert, 1995] J. McCarthy and W. Lehnert. Using
decision trees for coreference resolution. In Proceedings of the
14th International Joint Conference on Artificial Intelligence, pages
1050–1055, Morgan Kaufmann, San Francisco, CA, 1995.

[McCord, 1989] M. McCord. Slot grammar: A system for simple con-
struction of practical natural language grammars. In Proceedings of
the International Symposium on Natural Language and Logic, pages
118–145, Springer-Verlag, New York, NY, 1989.

[McKeown et al., 2002] K. McKeown, R. Barzilay, D. Evans, V. Hatzi-
vassiloglou, J. Klavans, A. Nenkova, C. Sable, B. Schiffman, and
S. Sigelman. Tracking and summarizing news on a daily basis with
Columbia’s newsblaster. In Proceedings of the Human Languages
Technology Conference, ACL, East Stroudsburg, PA, 2002.

[Mikheev et al., 1998] A. Mikheev, C. Grover, and M. Moens. De-
scription of the LTG system used for MUC-7. In Proceedings of
the Seventh Message Understanding Conference (MUC-7), NIST,
Washington, DC, 1998.

[Miller et al., 1998] S. Miller, M. Crystal, H. Fox, L. Ramshaw,
R. Schwartz, R. Stone, and R. Weischedel. BBN: Description of the
SIFT system as used for MUC-7. In Proceedings of the Seventh Mes-
sage Understanding Conference (MUC-7), NIST, Washington, DC,
1998.

[Nigam et al., 2000] K. Nigam, A. McCallum, S. Thrun, and
T. Mitchell. Text classification from labeled and unlabeled
documents using EM. Machine Learning, 39(2/3):1–32, 2000.

[Nigam, 2001] K. Nigam. Using Unlabeled Data to Improve Text
Classification. Ph.D. thesis, Carnegie Mellon University, 2001.

[Page and Brin, 1998] L. Page and S. Brin. The anatomy of a search
engine. In Proceedings of the 7th International WWW Conference
(WWW 98), http://www7.scu.edu.au, Brisbane, Australia, 1998.

224 References

[Page et al., 1998] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank citation ranking: Bringing order to the web. Stanford
Digital Libraries Technologies Project, 1998.

[Pietra et al., 1997] S. Pietra, V. Pietra, and J. Lafferty. Inducing fea-
tures of random fields. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19(4):380–393, 1997.

[Porter, 1980] M. Porter. An algorithm for suffix stripping. Program,
14(3):130–137, 1980.

[Radev and Tenfel, 2003] D. Radev and S. Tenfel, editors. Proceedings
of the HLT NAACL 2003 Workshop on Text Summarization, ACL,
East Stroudsburg, PA, 2003.

[Radev et al., 2002] D. Radev, M. Topper, and A. Winkel. Multi-
document centroid-based text summarization. In Proceedings of
ACL-02 Demo Session, pages 112–113, ACL, East Stroudsburg, PA,
2002.

[Ramshaw and Marcus, 1995] L. Ramshaw and M. Marcus. Text
chunking using transformation-based learning. In Proceedings of
the Third Workshop on Very Large Corpora, pages 82–94, ACL, East
Stroudsburg, PA, 1995.

[Ratnaparkhi, 1995] A. Ratnaparkhi. A maximum entropy part-of-
speech tagger. Computational Linguistics, 21(4):543–565, 1995.
http://www.cis.upenn.edu/∼adwait/penntools.html.

[Ratnaparkhi, 1999] A. Ratnaparkhi. Learning to parse natural
language with maximum entropy models. Machine Learning,
34:151–178, 1999.

[Ray, 2001] E. Ray. Learning XML, O’Reilly & Associates, Sebastopol,
CA, 2001.

[Riloff, 1993] E. Riloff. Automatically constructing a dictionary for
information extraction tasks. In Proceedings of the 11th National
Conference on Artificial Intelligence, pages 811–816, AAAI Press,
Menlo Park, CA, 1993.

[Robertson et al., 1994] S. Robertson, S. Walker, S. Jones, M. Hancock-
Beaulieu, and M. Gatford. Okapi at TREC-3. In Proceedings of the
Third Text Retrieval Conference, pages 109–126, NIST, Washington,
DC, 1994. http://trec.nist.gov/pubs/trec3/papers/city.ps.gz.

[Rosenblatt, 1962] F. Rosenblatt. Principles of Neurodynamics: Percep-
trons and the Theory of Brain Mechanisms, Spartan, New York,
1962.

References 225

[Roth and Yih, 2001] D. Roth and W. Yih. Relational learning via
propositional algorithms: An information extraction case study. In
Proceedings of the 17th International Joint Conference on Artificial
Intelligence, pages 1257–1263, Morgan Kaufmann, San Francisco,
CA, 2001.

[Salton and Lesk, 1965] G. Salton and M. Lesk. The SMART auto-
matic document retrieval system – An illustration. Communications
of the ACM, 8(6):391–398, 1965.

[Salton and Lesk, 1968] G. Salton and M. Lesk. Computer evalua-
tion of indexing and text processing. Journal of the Association for
Computing Machinery, 15(1):8–36, 1968.

[Salton and Wu, 1980] G. Salton and H. Wu. A term weighting model
based on utility theory. In Proceedings of SIGIR, pages 9–22, ACM
Press, New York, NY, 1980.

[Salton et al., 1975] G. Salton, A. Wong, and C. Yang. A vector space
model for automatic indexing. Communications of the ACM, 18:613–
620, 1975.

[Salton, 1964] G. Salton. A document retrieval system for man-
machine interaction. In Proceedings of the 19th Annual Interna-
tional ACM National Conference, pages L2.3.1–L2.3.20, ACM Press,
New York, NY, 1964.

[Salton, 1971] G. Salton. The SMART Retrieval System, Prentice-Hall,
Englewood Cliffs, NJ, 1971.

[Sang and Buchholz, 2000] E. Sang and S. Buchholz. Introduction
to the CoNLL-2000 shared task: Chunking. In Proceedings of
the CoNLL-2000 and LLL-2000, pages 127–132, ACL, East
Stroudsburg, PA, 2000.

[Sang and De Meulder, 2003] E. Sang and F. De Meulder. Introduc-
tion to the CoNLL-2003 shared task: Language independent named
entity recognition. In W. Daelemans and M. Osborne, editors, Pro-
ceedings of CoNLL-2003, pages 142–147, ACL, East Stroudsburg,
PA, 2003.

[Schapire and Singer, 1999] R. Schapire and Y. Singer. Improved
boosting algorithms using confidence-rated predictions. Machine
Learning, 37:297–336, 1999.

[Schapire and Singer, 2000] R. Schapire and Y. Singer. BoosTexter: A
boosting-based system for text categorization. Machine Learning,
39(2/3):135–168, 2000.

226 References

[Seshasai, 2000] S. Seshasai. Winston, Katz sue Ask Jeeves: AI lab
researchers attempt to enforce natural language patent. The Tech
(MIT), 2000. http://www-tech.mit.edu/V119/N66/.

[Soderland et al., 1995] S. Soderland, D. Fisher, J. Aseltine, and
W. Lehnert. CRYSTAL: Inducing a conceptual dictionary. In Pro-
ceedings of the 14th International Joint Conference on Artificial
Intelligence, pages 1314–1319, Morgan Kaufmann, San Francisco,
CA, 1995.

[Soderland, 1999] S. Soderland. Learning information extraction rules
for semi-structured and free text. Machine Learning, 34(1–3):233–
272, 1999.

[Soon et al., 2001] W-M. Soon, H-T. Ng, and C-Y. Lim. A machine
learning approach to coreference resolution of noun phrases.
Computational Linguistics, 27(4):521–544, 2001.

[Stein et al., 2000] G. Stein, A. Bagga, and G. Wise. Multi-document
summarization: Methodologies and evaluations. In Proceedings of
the 7th Conference on Automatic Natural Language Processing
(TALN’00), pages 337–346, ATALA Press, Paris, France, 2000.

[Tan et al., 2000] P. Tan, H. Blau, S. Harp, and R. Goldman. Textual
data mining of service center call records. In Proceedings of KDD-
2000, pages 417–423, ACM Press, New York, NY, 2000.

[Tan et al., 2002] C-M. Tan, Y-F. Wang, and C-D. Lee. The use of bi-
grams to enhance text categorization. Information Processing and
Management, 38(4):529–546, 2002.

[Tomita, 1985] M. Tomita. Efficient Parsing for Natural Language,
Kluwer Academic Publishers, Dordrecht, 1985.

[Vapnik, 1998] V. Vapnik. Statistical Learning Theory, John Wiley &
Sons, New York, 1998.

[Voorhees and Buckland, 2002] E. Voorhees and L. Buckland, editors.
NIST Special Publication 500-251: The Eleventh Text Retrieval Con-
ference (TREC 2002), Gaithersburg, Maryland, November 19–22,
2002, NIST Press, Washington, DC, 2002. Co-sponsored by DARPA
and ARDA.

[Voorhees, 1985] E. Voorhees. The cluster hypothesis revisited. In Pro-
ceedings of SIGIR-85, pages 188–196, ACM Press, New York, NY,
1985.

[Walker et al., 2001] D. Walker, D. Clements, M. Darwin, and
J. Amtrup. Sentence boundary detection: A comparison of

References 227

paradigms for improving MT quality. In Proceedings of the Eighth
Machine Translation Summit, ACL, East Stroudsburg, PA, 2001.

[Weiss and Verma, 2002] S. Weiss and N. Verma. A system for
real-time competitive market intelligence. In Proceedings of
SIGKDD-2002, ACM Press, New York, NY, 2002.

[Weiss et al., 1999] S. Weiss, C. Apté, F. Damerau, et al. Maximiz-
ing text-mining performance. IEEE Intelligent Systems, 14(4):63–69,
1999.

[Weiss et al., 2000a] S. Weiss, B. White, and C. Apté. Lightweight doc-
ument clustering. In Proceedings of PKDD-2000, pages 665–672,
Springer-Verlag, New York, NY, 2000.

[Weiss et al., 2000b] S. Weiss, B. White, C. Apté, and F. Damerau.
Lightweight document matching for help-desk applications. IEEE
Intelligent Systems, 15(2):57–61, 2000.

[Willett, 1988] P. Willett. Recent trends in hierarchic document
clustering. Information Processing and Management, 24:577–597,
1988.

[Xu and Croft, 1998] J. Xu and B. Croft. Corpus-based stemming using
cooccurrence of word variants. ACM Topics on Information Systems,
16(1):61–81, 1998.

[Yang and Pedersen, 1997] Y. Yang and J. Pedersen. A comparative
study of feature selection in text categorization. In Proceedings of
the Fourteenth International Conference on Machine Learning, pages
412–420, Morgan Kaufmann, San Francisco, CA, 1997.

[Zelenko et al., 2003] D. Zelenko, C. Aone, and A. Richardella. Ker-
nel methods for relation extraction. Journal of Machine Learning
Research, 3:1083–1106, 2003.

[Zhang and Johnson, 2003] T. Zhang and D. Johnson. A robust risk
minimization based named entity recognition system. In Proceed-
ings of CoNLL-2003, pages 204–207, ACL, East Stroudsburg, PA,
2003.

[Zhang and Oles, 2000] T. Zhang and F. Oles. A probability analysis
on the value of unlabeled data for classification problems. In Pro-
ceedings of ICML-00, pages 1191–1198, Morgan Kaufmann, San
Francisco, CA, 2000.

[Zhang and Oles, 2001] T. Zhang and F. Oles. Text categorization
based on regularized linear classification methods. Information
Retrieval, 4:5–31, 2001.

228 References

[Zhang et al., 2002] T. Zhang, F. Damerau, and D. Johnson. Text
chunking based on a generalization of Winnow. Journal of Machine
Learning Research, 2(5):615–637, 2002.

[Zhang et al., 2003] T. Zhang, F. Damerau, and D. Johnson. Updat-
ing an NLP system to fit new domains: An empirical study on the
sentence segmentation problem. In Proceedings of the Seventh Con-
ference on Natural Language Learning, CoNLL-2003, pages 56–62,
ACL, East Stroudsburg, PA, 2003.

[Zhang, 2002] T. Zhang. On the dual formulation of regularized linear
systems. Machine Learning, 46:91–129, 2002.

[Zhang, 2004] T. Zhang. Statistical behavior and consistency of classi-
fication methods based on convex risk minimization. The Annals of
Statistics, 32(1):56–134, 2004. With discussion.

[Zhong and Ghosh, 2003] S. Zhong and J. Ghosh. A unified framework
for model-based clustering. Journal of Machine Learning Research,
4:1001–1037, 2003.

Author Index

A
Alspector, J., 84
Amtrup, J., 44
Aone, C., 156
Apté, C., 45, 82–84, 194, 210
Aseltine, J., 155

B
Bagga, A., 127
Banerjee, A., 128
Barzilay, R., 195
Bekkerman, R., 126
Bikel, D., 45, 155
Blau, H., 84
Borthwick, A., 155
Breiman, L., 83, 156
Brill, E., 44
Brin, S., 101
Buchholz, S., 45
Buckland, L., 211

C
Califf, M., 155
Cardie, C., 155
Catlett, J., 210
Charniak, E., 45

Chen, H., 127
Chiang, D., 45
Clements, D., 44
Cohen, W., 82
Collins, M., 211
Craven, M., 156
Croft, B., 44
Crystal, M., 154
Cutting, D., 127

D
Damerau, F., 44, 45, 82–84,

156, 194, 210, 211
Darroch, J., 156
Darwin, M., 44
De Meulder, F., 194
Dempster, A., 127
Dhillon, I., 127
Dumais, S., 127

E
Earley, J., 45
Eastman, C., 82
El-Yaniv, R., 126
Elkan, C., 127
Evans, D., 195

230 Author Index

F
Feldbaum, C., 44
Fisher, D., 155
Florian, R., 156
Forman, G., 45
Fox, H., 154
Freitag, D., 155
Freund, Y., 83, 156
Friedman, J., 83, 156

G
Garfield, E., 101
Gatford, M., 102
Ghosh, J., 128
Goldman, R., 84
Graham, P., 84, 194
Grover, C., 155

H
Hancock-Beaulieu, M., 102
Harp, S., 84
Hastie, T., 83, 156
Hatzivassiloglou, V., 195
Hausman, K., 154
Hayes, P., 13
Huffman, S., 155

I
Ide, N., 44
Indurkhya, N., 83, 194
Ittycheriah, A., 156
Iyengar, V., 210

J
Jardine, N., 13, 127
Jaynes, E., 156

Jing, H., 156
Joachims, T., 83
Johnson, D., 44, 45, 156, 194
Jones, S., 102
Jurafsky, D., 44

K
Karger, D., 127
Kearns, M., 127
Kim, J., 155
Klavans, J., 195
Kleinberg, J., 101
Kolcz, A., 84
Krupka, G., 154
Kudoh, T., 45
Kuhns, J., 13

L
Lafferty, J., 156
Laird, N., 127
Langford, J., 128
Lappin, S., 155
Leass, H., 155
Lee, C-D., 45
Lehnert, W., 155
Lesk, M., 101
Lewis, D., 44, 45, 210
Li, F., 44, 83
Liere, R., 210
Lim, C-Y., 155
Linoff, G., 82
Littlestone, N., 211
Luhn, H., 13, 210

M
MacQueen, J., 127
Maloof, M., 82

Author Index 231

Manning, C., 44
Mansour, Y., 127
Marcus, M., 45
Maron, M., 13
Martin, J., 44
Masand, B., 82
Matsumoto, Y., 45
McCallum, A., 82, 127, 156
McCarthy, J., 155
McCord, M., 45
McKeown, K., 195
Mikheev, A., 155
Miller, S., 45, 154, 155
Mitchell, T., 127
Modha, D., 127
Moens, M., 155
Moldovan, D., 155
Mooney, R., 155
Motwani, R., 101

N
Nenkova, A., 195
Ng, A-Y., 127
Ng, H-T., 155
Nigam, K., 82, 127, 210

O
Oles, F., 83, 210

P
Page, L., 101
Pedersen, J., 45, 127
Pereira, F., 156
Pietra, S., 156
Pietra, V., 156
Porter, M., 44

R
Radev, D., 210
Ramshaw, L., 45, 154
Ratcliff, D., 156
Ratnaparkhi, A., 44, 45
Ray, E., 44
Richardella, A., 156
Rijsbergen, C. van, 13, 127
Riloff, E., 155
Robertson, S., 102
Rose, T., 44
Rosenblatt, F., 211
Roth, D., 156
Rubin, D., 127

S
Sable, C., 195
Salton, G., 13, 101, 126
Salton, G., 101
Sang, E., 45, 194
Schapire, R., 83, 156, 210
Schiffman, B., 195
Schutze, H., 44
Schwartz, R., 45, 154
Seshasai, S., 211
Sigelman, S., 195
Singer, Y., 83, 210
Slattery, S., 156
Soderland, S., 155
Soon, W-M., 155
Stein, G., 127
Stone, R., 154

T
Tadepalli, P., 210
Tan, C-M., 45
Tan, P., 84
Tenfel, S., 210

232 Author Index

Thrun, S., 127
Tibshirani, R., 83, 156
Tishby, N., 126
Tomita, M., 45
Topper, M., 210
Tukey, J., 127

V
Vapnik, V., 83, 156
Verma, N., 194
Voorhees, E., 127, 211
Véronis, J., 44

W
Wagstaff, K., 155
Walker, D., 44
Walker, S., 102
Waltz, D., 82
Wang, Y-F., 45
Weinstein, S., 13
Weischedel, R., 45, 154, 155
Weiss, S., 45, 82–84, 194, 210
Weiss, Stephen, 82

White, B., 84, 194
Willett, P., 127
Winkel, A., 210
Winograd, T., 101
Winter, Y., 126
Wise, G., 127
Wong, A., 13
Wu, H., 101

X
Xu, J., 44

Y
Yang, C., 13
Yang, Y., 44, 45, 83
Yih, W., 156

Z
Zelenko, D., 156
Zhang, T., 44, 45, 83, 156, 194,

210
Zhong, S., 128

Subject Index

A
Accuracy, 12, 79
Active learning, 201
Applications

classification, 81
clustering, 122
criminal justice, 152
extraction systems, 151
information extraction,

151
information retrieval, 151
intelligence, 153

Ask Jeeves, 208
Attributes, see Features

B
Bagging, 204
Bayes rule, 67
Boosting, 204

C
Case studies

classification, 157, 172,
178, 186, 191

clustering, 167, 191
digital libraries, 163

document matching, 163
e-mail filters, 178
help desk, 167
market intelligence, 157
model cases, 167
named entities, 186
newspapers, 191
newswire articles, 172
search engines, 182

Categorization, see
Classification

Centroid classifier, 113
Classification, 7, 52

applications, 81
case studies, 157, 172, 178,

186, 191
centroid, 113
decision rules, 58
decision trees, 83
GIS method, 138
linear, 69
maximum entropy, 135
multinomial model, 69
naive Bayes, 67
nearest-neighbor, 55
tag prediction, 133
voting, 204

Clustering, 9, 103, 198
applications, 122

234 Subject Index

case studies, 167, 191
descriptors, 120
hard, see k-means
hierarchical, 114
k-means, 109
nearest-neighbor, 106
soft, 117

Collocations, see Features,
multiword

Coreference resolution, 145
Corpus

Reuters, 16, 17, 44
Wall Street Journal, 37

Cosine similarity, 57, 91
Cost-sensitive learning, 206
Cotraining, 203
Criminal justice, 152
Customized newspapers, 191

D
Data mining, 1

spreadsheet model, 2
Database construction, 149
Decision rules, 58

case studies, 157
pruning, 61
selection, 64

Decision trees, 83, 174
Dictionary

global, 25
local, 26
reduction, 26

Document
collection, 15
matching, 97
organization, see

Clustering
predictive patterns, 49
similarity, 56, 87, 89, 90,

106, 107

standardization, 18

E
E-mail filtering, 179
EM algorithm, 117
English Slot Grammar, 42
Error rate, 78
Evaluation, 11, 77

clustering, 123
error rate, 78
F-measure, 79
holdout, 11
IR, 100
precision, 79
recall, 79
standard error, 78

Extraction systems, 151

F
F-measure, 79
Features

categorical, 2
generation, 42
multiword, 32
ordered numerical, 2
ranking, 35
selection, 35
transformations, 28

Frequency, see Word count

G
Generalized iterative scaling,

138
GIS method, see Generalized

iterative scaling
Google

news service, 195

Subject Index 235

search engine, 94, 101

H
Help desk applications, 167
Hierarchical clustering, 114
Holdout, 11

I
Information

gain metric, 35
retrieval, 8, 85, 182

Information extraction, 10, 129
applications, 151

Intelligence applications, 153
Inverse document frequency,

30
Inverted lists, 98, 183

K
k-means, 109

L
Lemmatization, see Stemming
Lightweight document

matching, 163
Linear Methods, 69
Linear methods

case studies, 186
training, 71

Linguistic features, 140
Link analysis, 93
Loss functions, 72–74

M
Market intelligence, 157

Matching
case studies, 163

Maximum entropy method, 135
Model cases

generation, 167
Mozilla e-mail, 179
Multinomial model, 69
Multiword

association measures, 34

N
Naive Bayes, 67
Named entities, 32, 40, 132

case studies, 186
linguistic features, 140
probability model, 143
sequential tagging, 132

Nearest-neighbor methods, 55,
88

Newswire articles
topic assignment, 172

O
Online learning, 205

P
PageRank algorithm, 94
Parsing, 40
Part-of-speech

tagging, 37
Perceptrons, 205
Phrase recognition, 39
POS, see Part-of-speech

identification, 42
Penn Tree Bank, 37

Precision, 79
recall tradeoff, 80

236 Subject Index

Prediction, 11, 47
evaluation, 77

Preprocessing, 15

Q
Question answering, 208

R
Random sampling, 77
Rare events, 207
Recall, 79

precision tradeoff, 80
Regularization, 73
Relationship extraction, 148
Reuters RCV1 data, 16, 173
Robust risk minimization, 74
Rule induction, see Decision

rules

S
Sample size, 51
Search

key words, 87
PageRank algorithm, 94
Web-based, 92

Search engines, 182
Sentence boundary

determination, 36
Sequential probability model,

143
Similarity

bonus, 90
cosine, 91

Software
clustering, 109
decision rules, 66
dictionary generation, 25

linear, 76
matcher, 100
multiword, 34
naive Bayes, 68
named entities, 135
sentence boundaries, 37
stemmer, 23
tokenization, 21
vectorization, 28

Spam filtering, see E-mail
filtering

Spreadsheet model, 2
from text, 4
labels, 34
sparse, 5, 32

Standard error, 78
Standard form, see

Spreadsheet model
Stemming

aggressive, 23
inflectional, 21

Stemming to root, 23
Stopwords, 26
Structured data

unstructured text, 2
Summarization, 198

T
Tag prediction, 133
Template filling, 149
Teoma search engine, 183
Term frequency, 30
Text mining, 1

classification, 7
clustering, 9
document matching, 8
evaluation, 11
information extraction, 10
information retrieval, 8, 85

Subject Index 237

prediction, 11
preprocessing, 15
sample size, 51

tf-idf, 30
Tokenization, 20
TREC, 17

U
Unbalanced samples, 207
Unlabeled data, 202
Unstructured data

conversion, 2

V
Vectors, 15

generation, 25
sparse, 31

Voting classifiers, 204

W
Word count, 27, 30

bonus, 90
shared, 89
thresholding, 30

Word pairs, see Features,
multiword

Word sense disambiguation, 39

X
XML, 3, 18, 164

